9 research outputs found

    Threshold Tolerance of New Genotypes of Pennisetum glaucum (L.) R. Br. to Salinity and Drought

    Get PDF
    With continued population growth, increasing staple crop production is necessary. However, in dryland areas, this is negatively affected by various abiotic stresses, such as drought and salinity. The field screening of 10 improved genetic lines of pear millet originating from African dryland areas was conducted based on a set of agrobiological traits (i.e., germination rate, plant density, plant maturity rate, forage, and grain yields) in order to understand plant growth and its yield potential responses under saline environments. Our findings demonstrated that genotype had a significant impact on the accumulation of green biomass (64.4% based on two-way ANOVA), while salinity caused reduction in grain yield value. HHVBC Tall and IP 19586 were selected as the best-performing and high-yielding genotypes. HHVBC Tall is a dual purpose (i.e., forage and grain) line which produced high grain yields on marginal lands, with soil salinization up to electrical conductivity (EC) 6–8 dS m−1 (approximately 60–80 mM NaCl). Meanwhile, IP 19586, grown under similar conditions, showed a rapid accumulation of green biomass with a significant decrease in grain yield. Both lines were tolerant to drought and sensitive to high salinity (above 200 mM NaCl). The threshold salinity of HHVBC Tall calculated at the seedling stage was lower than that of IP 19586. Seedling viability of these lines was affected by oxidative stress and membrane peroxidation, and they had decreased chlorophyll and carotenoid biosynthesis. This study demonstrated that ionic stress is more detrimental for the accumulation of green and dry biomass, in combination with increasing the proline and malonic dialdehyde (MDA) contents of both best-performing pearl millet lines, as compared with osmotic stress

    Role of salicylic acid in acclimation to low temperature

    Get PDF
    Low temperature is one of the most important limiting factors for plant growth throughout the world. Exposure to low temperature may cause various phenotypic and physiological symptoms, and may result in oxidative stress, leading to loss of membrane integrity and to the impairment of photosynthesis and general metabolic processes. Salicylic acid (SA),phenolic compound produced by a wide range of plant species, a may participate in many physiological and metabolic reactions in plants. It has been shown that exogenous SA may provide protection against low temperature injury in various plant species, while various stress factors may also modify the synthesis and metabolism of SA. In the present review, recent results on the effects of SA and related compounds in processes leading to acclimation to low temperatures will be discussed

    Low-temperature stress: is phytohormones application a remedy?

    No full text
    corecore