25 research outputs found

    Differences in bioactivity between human insulin and insulin analogues approved for therapeutic use- compilation of reports from the past 20 years

    Get PDF
    In order to provide comprehensive information on the differences in bioactivity between human insulin and insulin analogues, published in vitro comparisons of human insulin and the rapid acting analogues insulin lispro (Humalog®), insulin aspart ( NovoRapid®), insulin glulisine (Apidra®), and the slow acting analogues insulin glargine (Lantus®), and insulin detemir (Levemir®) were gathered from the past 20 years (except for receptor binding studies). A total of 50 reports were retrieved, with great heterogeneity among study methodology. However, various differences in bioactivity compared to human insulin were obvious (e.g. differences in effects on metabolism, mitogenesis, apoptosis, intracellular signalling, thrombocyte function, protein degradation). Whether or not these differences have clinical bearings (and among which patient populations) remains to be determined

    Adiponectin receptor-1 expression is associated with good prognosis in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adiponectin is inversely related to BMI, positively correlates with insulin sensitivity, and has anti-atherogenic effects. In recent years, adiponectin has been well studied in the field of oncology. Adiponectin has been shown to have antiproliferative effects on gastric cancer, and adiponectin expression is inversely correlated with clinical staging of the disease. However, no studies have reported the correlation between serum adiponectin and receptor expression with disease progression.</p> <p>Methods</p> <p>In this study, we evaluated expression levels of 2 adiponectin receptors--AdipoR1 and AdipoR2--and attempted to correlate their expression with prognosis in gastric cancer patients. AdipoR1 and AdipoR2 expression in gastric cancer cell lines (MKN45, TMK-1, NUGC3, and NUGC4) was evaluated by western blotting analysis, and the antiproliferative potential of adiponectin was examined in vitro. Serum adiponectin levels were evaluated in 100 gastric cancer patients, and the expression of AdipoR1 and AdipoR2 was assessed by immunohistochemical staining.</p> <p>Results</p> <p>MKN45 and NUGC3 expressed higher levels of AdipoR1 compared to NUGC4, even though there was no significance in AdipoR2 expression. The antiproliferative effect of adiponectin was confirmed in MKN45 and NUGC3 at 10 μg/ml. No significant associations were observed between serum adiponectin levels and clinicopathological characteristics, but lymphatic metastasis and peritoneal dissemination were significantly higher in the negative AdipoR1 immunostaining group (24/32, <it>p </it>= 0.013 and 9/32, <it>p </it>= 0.042, respectively) compared to the positive AdipoR1 group (lymphatic metastasis, 33/68; peritoneal dissemination, 8/68). On the other hand, AdipoR2 expression was only associated with histopathological type (<it>p </it>= 0.001). In survival analysis, the AdipoR1 positive staining group had significantly longer survival rates than the negative staining group (<it>p </it>= 0.01). However, multivariate analysis indicated that AdipoR1 was not an independent prognostic factor on patient's survival on gastric cancer.</p> <p>Conclusions</p> <p>In gastric cancer, adiponectin has the possibility to be involved in cell growth suppression via AdipoR1. The presence of AdipoR1 could be a novel anticancer therapeutic target in gastric cancer.</p

    Novel effectors of directed and Ngn3-mediated differentiation of mouse embryonic stem cells into endocrine pancreas progenitors

    No full text
    The delineation of regulatory networks involved in early endocrine pancreas specification will play a crucial role in directing the differentiation of embryonic stem cells toward the mature phenotype of beta cells for cell therapy of type 1 diabetes. The transcription factor Ngn3 is required for the specification of the endocrine lineage, but its direct targets and the scope of biological processes it regulates remain elusive. We show that stepwise differentiation of embryonic stem cells using successive in vivo patterning signals can lead to simultaneous induction of Ptf1a and Pdx1 expression. In this cellular context, Ngn3 induction results in upregulation of its known direct target genes within 12 hours. Microarray gene expression profiling at distinct time points following Ngn3 induction suggested novel and diverse roles of Ngn3 in pancreas endocrine cell specification. Induction of Ngn3 expression results in regulation of the Wnt, integrin, Notch, and transforming growth factor {beta} signaling pathways and changes in biological processes affecting cell motility, adhesion, the cytoskeleton, the extracellular matrix, and gene expression. Furthermore, the combination of in vivo patterning signals and inducible Ngn3 expression enhances ESC differentiation toward the pancreas endocrine lineage. This is shown by strong upregulation of endocrine lineage terminal differentiation markers and strong expression of the hormones glucagon, somatostatin, and insulin. Importantly, all insulin(+) cells are also C-peptide(+), and glucose-dependent insulin release was 10-fold higher than basal levels. These data suggest that bona fide pancreas endocrine cells have been generated and that timely induction of Ngn3 expression can play a decisive role in directing ESC differentiation toward the endocrine lineage
    corecore