25 research outputs found

    A Novel Hybrid Approach for Fast Block Based Motion Estimation

    Get PDF
    The current work presents a novel hybrid approach for motion estimation of various video sequences with a purpose to speed up the entire process without affecting the accuracy. The method integrates the dynamic Zero motion pre-judgment (ZMP) technique with Initial search centers (ISC) along with half way search termination and Small diamond search pattern. Calculation of the initial search centers has been shifted after the process of zero motion pre-judgment unlike most the previous approaches so that the search centers for stationary blocks need not be identified. Proper identification of ISC dismisses the need to use any fast block matching algorithm (BMA) to find the motion vectors (MV), rather a fixed search pattern such as small diamond search pattern is sufficient to use. Half way search termination has also been incorporated into the algorithm which helps in deciding whether the predicted ISC is the actual MV or not which further reduced the number of computations. Simulation results of the complete hybrid approach have been compared to other standard methods in the field. The method presented in the manuscript ensures better video quality with fewer computations

    An Empiric Analysis of Wavelet-Based Feature Extraction on Deep Learning and Machine Learning Algorithms for Arrhythmia Classification

    Get PDF
    The aberration in human electrocardiogram (ECG) affects cardiovascular events that may lead to arrhythmias. Many automation systems for ECG classification exist, but the ambiguity to wisely employ the in-built feature extraction or expert based manual feature extraction before classification still needs recognition. The proposed work compares and presents the enactment of using machine learning and deep learning classification on time series sequences. The two classifiers, namely the Support Vector Machine (SVM) and the Bi-directional Long Short-Term Memory (BiLSTM) network, are separately trained by direct ECG samples and extracted feature vectors using multiresolution analysis of Maximal Overlap Discrete Wavelet Transform (MODWT). Single beat segmentation with R-peaks and QRS detection is also involved with 6 morphological and 12 statistical feature extraction. The two benchmark datasets, multi-class, and binary class, are acquired from the PhysioNet database. For the binary dataset, BiLSTM with direct samples and with feature extraction gives 58.1% and 80.7% testing accuracy, respectively, whereas SVM outperforms with 99.88% accuracy. For the multi-class dataset, BiLSTM classification accuracy with the direct sample and the extracted feature is 49.6% and 95.4%, whereas SVM shows 99.44%. The efficient statistical workout depicts that the extracted feature-based selection of data can deliver distinguished outcomes compared with raw ECG data or in-built automatic feature extraction. The machine learning classifiers like SVM with knowledge-based feature extraction can equally or better perform than Bi-LSTM network for certain datasets

    A multi-crop disease identification approach based on residual attention learning

    No full text
    In this work, a technique is proposed to identify the diseases that occur in plants. The system is based on a combination of residual network and attention learning. The work focuses on disease identification from the images of four different plant types by analyzing leaf images of the plants. A total of four datasets are used for the work. The system incorporates attention-aware features computed by the Residual Attention Network (Res-ATTEN). The base of the network is ResNet-18 architecture. Integrating attention learning in the residual network helps improve the system's overall accuracy. Various residual attention units are combined to create a single architecture. Unlike the traditional attention network architectures, which focus only on a single type of attention, the system uses a mixed type of attention learning, i.e., a combination of spatial and channel attention. Our technique achieves state-of-the-art performance with the highest accuracy of 99%. The results show that the proposed system has performed well for both purposes and notably outperformed the traditional systems

    A Novel Hybrid Approach for Fast Block Based Motion Estimation

    No full text
    The current work presents a novel hybrid approach for motion estimation of various video sequences with a purpose to speed up the entire process without affecting the accuracy. The method integrates the dynamic Zero motion pre-judgment (ZMP) technique with Initial search centers (ISC) along with half way search termination and Small diamond search pattern. Calculation of the initial search centers has been shifted after the process of zero motion pre-judgment unlike most the previous approaches so that the search centers for stationary blocks need not be identified. Proper identification of ISC dismisses the need to use any fast block matching algorithm (BMA) to find the motion vectors (MV), rather a fixed search pattern such as small diamond search pattern is sufficient to use. Half way search termination has also been incorporated into the algorithm which helps in deciding whether the predicted ISC is the actual MV or not which further reduced the number of computations. Simulation results of the complete hybrid approach have been compared to other standard methods in the field. The method presented in the manuscript ensures better video quality with fewer computations

    Recognition of Partially Occluded Objects Using Neural Network Based Indexing

    No full text
    In this paper, a new neural network based indexing scheme has been proposed for recognition of planar shapes. Local contour segment-based-invariants have been used for indexing. Object contours have been obtained using a new algorithm which combines advantages of region growing and edge detection. Neighbourhood constraints have been applied on the results of indexing for combining hypotheses generated through the indexing scheme. Composite hypotheses have been veri"ed using a distance transform based algorithm. Experimental results, on real images of varying complexity of a reasonably large database of objects have established the robustness of the method. ( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved. Keywords: Object recognition; Invariant indexing; Neural networks; Hypothesize-and-test; Contour segments 1. Introduction Object recognition is "nding applications in the newer areas of content-based image retrieval, video indexing, etc., i..

    Automatic adaptive weighted fusion of features-based approach for plant disease identification

    No full text
    With the rapid expansion in plant disease detection, there has been a progressive increase in the demand for more accurate systems. In this work, we propose a new method combining color information, edge information, and textural information to identify diseases in 14 different plants. A novel 3-branch architecture is proposed containing the color information branch, an edge information branch, and a textural information branch extracting the textural information with the help of the central difference convolution network (CDCN). ResNet-18 was chosen as the base architecture of the deep neural network (DNN). Unlike the traditional DNNs, the weights adjust automatically during the training phase and provide the best of all the ratios. The experiments were performed to determine individual and combinational features’ contribution to the classification process. Experimental results of the PlantVillage database with 38 classes show that the proposed method has higher accuracy, i.e., 99.23%, than the existing feature fusion methods for plant disease identification
    corecore