9 research outputs found

    Hydrogen Resistive Sensors based on Organized Nanostructures Assembles

    No full text
    Les contextes mondiaux Ă©nergĂ©tiques, climatiques et Ă©conomiques actuels Ă©voluent de maniĂšres telles que le dihydrogĂšne H2 prend une place de plus en plus importante en tant que combustible et vecteur Ă©nergĂ©tique. Le dihydrogĂšne est un gaz incolore, inodore et non-toxique donc indĂ©celable par les sens humains, mais il est extrĂȘmement inflammable et explosif. De plus, H2 est caractĂ©risĂ© par un domaine d'explosivitĂ© trĂšs large, de 4 % Ă  75 % de H2 dans l'air. L'objet de ce travail de thĂšse a donc Ă©tĂ© de prĂ©parer des capteurs de sĂ©curitĂ© ou de quantification originaux et ayant des performances accrues pour la dĂ©tection de H2. Les capteurs prĂ©parĂ©s sont de types rĂ©sistifs et les mĂ©taux sensibles utilisĂ©s sont le palladium et le platine. Afin d'amĂ©liorer les performances de dĂ©tection de ces capteurs Ă  dihydrogĂšne, plusieurs morphologies de couches sensibles ont Ă©tĂ© conçues : des monocouches organisĂ©es Ă  2 dimensions de nanoparticules cƓurs-coquilles Pd@Au et Pt@Au formĂ©es par la mĂ©thode de Langmuir-Blodgett ou immobilisĂ©s sur les substrats par un agent de couplage de type silane (mercaptopropyltrimethoxysilane), des dĂ©pĂŽts physiques Ă  2 dimensions et des films de nanoparticules Ă  3 dimensions. Selon la morphologie de la couche prĂ©parĂ©e et le type de mĂ©tal sensible utilisĂ©, divers mĂ©canismes de dĂ©tection ont Ă©tĂ© mis en Ă©vidence et diverses performances de dĂ©tection ont Ă©tĂ© observĂ©es (type et amplitude de rĂ©ponse, gamme de dĂ©tection, temps de rĂ©ponse et de retour,...). Les modĂšles de Fuchs-Sondheimer et Mayadas-Shatzkes d'une part, et un modĂšle de percolation par la crĂ©ation de chemins de conduction d'autre part, ont permis d'expliquer les variations de rĂ©sistivitĂ© Ă©lectrique des couches sensibles Ă  base respectivement de platine et de palladium lors de l'exposition Ă  l'hydrogĂšne.Hydrogen takes is foreseen as a generalized fuel and energy carrier. It is a colorless, odorless and non-toxic gas, and therefore it is undetectable by the human senses. Hydrogen has a severe drawback as it is an extremely flammable and explosive gas. Moreover, H2 has a wide explosive range, from 4 to 75 % H2 in air. Therefore, the aim of this PhD work was to develop safety and concentration sensors with enhanced performances. Resistive sensing layers were designed on several morphologies and sensing materials : 2D Langmuir-Blodgett organized monolayers of core-shell Pd@Au or Pt@Au nanoparticles, immobilized Pd@Au monolayer grafted through a self assembled monolayer, evaporated 2D metal films of Pt or Pd, and 3D platinum nanoparticles arrays. According to the sensing layer morphology and sensing metal, numerous sensing mechanisms and performances were demonstrated (response type and amplitude, sensing range, response and recovery times,
). Fuchs-Sondheimer and Mayadas-Shatzkes models on the one hand, and a percolation model on the other, allowed the origin of electrical resistance changes to be pointed out, respectively for platinum and palladium sensing layers

    Palladium-silver mesowires for the extended detection of H2.

    No full text
    International audiencePalladium-silver mesowires are prepared by electrochemical decoration of graphite step-edges with a good control of the alloy composition and wire diameter. As-prepared arrays are used for hydrogen sensing and demonstrate extended detection capabilities up to the whole concentration range of H(2) depending on the alloy composition. At low silver content, low hydrogen concentration is detected but the sensing window is narrow because of sensor saturation. The sensing window is advantageously extended to higher hydrogen concentrations for quantitative measurements up to pure H(2) flows with Ag-rich alloys. The mechanism responsible for these behaviors implies the statistical distribution in surface composition rather than the structural characteristics and stability domains of the corresponding hydride phases

    Modifications of MXene layers for supercapacitors

    Get PDF
    International audienceThe re-stacking of Ti3C2Tx-MXene layers has been prevented by using two different approaches: a facile hard templating method and a pore-forming approach. The expanded MXene obtained by using MgO nanoparticles as hard templates displayed an open morphology based on crumpled layers. The corresponding electrode material delivered 180 F g-1 of capacitance at 1 A g-1 and maintained 99 % of its initial capacitance at 5 A g-1 over five thousand charge-discharge cycles. On the other hand, the MXene foam prepared after heating a MXene-urea composite at 550°C, showed numerous macropores on the surface layer and a complex open 3D inner-architecture. Thanks to this foamy porous structure, the binder-free electrode based on the resulting MXene foam displayed a great capacitance of 203 F g-1 at 5 A g-1 current density, 99 % of which was retained after five thousand cycles. In comparison, the pristine MXene-based electrode delivered 82 F g-1 , only, in the same operating conditions. An asymmetric device built on a negative MXene foam electrode and a positive MnO2 electrode exhibited an attractive energy density of 16.5 Wh kg-1 (or 10 Wh L-1) and 160 W kg-1 (or 8.5 kW L-1) power density. Altogether, the enhanced performances of these nano-engineered 2D materials are a clear demonstration of the efficiency of the chosen synthetic approaches to work out the re-stacking issue of MXene layers

    New topotactic synthetic route to mesoporous silicon carbide

    No full text
    International audienc

    Two-Photon Fluorescence Imaging and Therapy of Cancer Cells with Anisotropic Gold-Nanoparticle-Supported Porous Silicon Nanostructures

    No full text
    International audienceIn this work, we prepared porous silicon (pSi) nanostructures decorated with gold nanoparticles, as probes for cell tissue imaging under two‐photon excitation. We also demonstrated that the Au/pSi nanosystems induced cytotoxicity and phototoxicity under two‐photon excitation
    corecore