20 research outputs found

    Engineered atherosclerosis-specific zinc ferrite nanocomplex-based MRI contrast agents

    Full text link
    BACKGROUND: Cardiovascular diseases are the most prevalent cause of morbidity and mortality affecting millions of people globally. The most effective way to counter cardiovascular complications is early diagnosis and the safest non-invasive diagnostic approach is magnetic resonance imaging (MRI). In this study, superparamagnetic ferrite nanoparticles doped with zinc, exhibiting highly enhanced saturation magnetization and T2 and computed tomography (CT) contrast were synthesized. These nanoparticles have been strategically engineered using bovine lactoferrin (Lf), polyethylene glycol (PEG), and heat shock protein (Hsp)-70 antibody specifically targeting atherosclerosis with potential therapeutic value. The nanocomplexes were further validated in vitro to assess their cytotoxicity, internalization efficiency, effects on cellular proliferation and were assessed for MRI as well as X-ray CT in ex vivo Psammomys obesus rat model. RESULTS: Optimized zinc doped ferrite nanoparticles (Zn0.4Fe2.6O4) with enhanced value of maximum saturation magnetization value on 108.4 emu/g and an average diameter of 24 ± 2 nm were successfully synthesized. Successfully incorporation with bovine lactoferrin, PEG and Hsp-70 (70 kDa) antibody led to synthesis of spherical nanocomplexes (size 224.8 nm, PDI 0.398). A significantly higher enhancement in T2 (p < 0.05, 1.22-fold) and slightly higher T1 (1.09-fold) and CT (1.08-fold) contrast compared to commercial ferrite nanoparticles was observed. The nanocomplexes exhibited effective cellular internalization within 2 h in both THP-1 and Jurkat cells. MRI scans of contrast agent injected animal revealed significant arterial narrowing and a significantly higher T2 (p < 0.05, 1.71-fold) contrast in adult animals when compared to juvenile and control animals. The excised heart and aorta agar phantoms exhibited weak MRI contrast enhancement in juvenile animal but significant contrast enhancement in adult animal specifically at the aortic arch, descending thoracic aorta and iliac bifurcation region with X-ray CT scan. Histological investigation of the contrast agent injected aorta and heart confirmed site target-specific accumulation at the atherosclerotic aortic arch and descending thoracic aorta of the adult animal with severely damaged intima full of ruptured microatheromas. CONCLUSION: Overall, the study demonstrates the strategic development of nanocomplex based bimodal MRI and CT contrast agents and its validation on Psammomys obesus for atherosclerosis diagnostics

    Analysis of heterotic potential for yield and its attributing traits in okra (Abelmoschus esculentus L. Moench)

    Get PDF
    The present investigation was conducted on okra (Abelmoschus esculentus) to determine the extent of heterosis for 12 traits, including fruit yield and its attributing traits. A total of 28 F1s produced by crossing seven lines with four testers of okra in Line x Tester fashion were evaluated along with standard check during late Kharif 2022 season. The cross C20-HRB-55 x Varsha Uphar recorded best heterobeltiosis and the cross C10-VRO-4 x Azad Ganga recorded best standard heterosis for yield plant-1. The cross C10- VRO-4 x Azad Ganga showed negative heterosis over better parent and standard check for the traits days to 50% flowering and days to first picking. The F1 hybrid C10- VRO-4 x Azad Ganga, which has a high potential for yield can be evaluated further for early Kharif season in Punjab

    Theranostic multimodular potential of zinc-doped ferrite-saturated metal-binding protein-loaded novel nanocapsules in cancers

    Full text link
    The present study successfully developed orally deliverable multimodular zinc (Zn) iron oxide (Fe3O4)-saturated bovine lactoferrin (bLf)-loaded polymeric nanocapsules (NCs), and evaluated their theranostic potential (antitumor efficacy, magnetophotothermal efficacy and imaging capability) in an in vivo human xenograft CpG-island methylator phenotype (CIMP)-1(+)/CIMP2(-)/chromosome instability-positive colonic adenocarcinoma (Caco2) and claudin-low, triple-negative (ER(-)/PR(-)/HER2(-); MDA-MB-231) breast cancer model. Mice fed orally on the Zn-Fe-bLf NC diet showed downregulation in tumor volume and complete regression in tumor volume after 45 days of feeding. In human xenograft colon cancer, vehicle-control NC diet-group (n=5) mice showed a tumor volume of 52.28±11.55 mm(3), and Zn-Fe-bLf NC diet (n=5)-treated mice had a tumor-volume of 0.10±0.073 mm(3). In the human xenograft breast cancer model, Zn-Fe-bLf NC diet (n=5)-treated mice showed a tumor volume of 0.051±0.062 mm(3) within 40 days of feeding. Live mouse imaging conducted by near-infrared fluorescence imaging of Zn-Fe-bLf NCs showed tumor site-specific localization and regression of colon and breast tumor volume. Ex vivo fluorescence-imaging analysis of the vital organs of mice exhibited sparse localization patterns of Zn-Fe-bLf NCs and also confirmed tumor-specific selective localization patterns of Zn-Fe-bLf NCs. Dual imaging using magnetic resonance imaging and computerized tomography scans revealed an unprecedented theranostic ability of the Zn-Fe-bLf NCs. These observations warrant consideration of multimodular Zn-Fe-bLf NCs for real-time cancer imaging and simultaneous cancer-targeted therapy

    Studies of turbulent flows in continuous casting of steel with and without magnetic field

    Get PDF
    This thesis develops and tests various transient and steady-state computational models such as direct numerical simulation (DNS), large eddy simulation (LES), filtered unsteady Reynolds-averaged Navier-Stokes (URANS) and steady Reynolds-averaged Navier-Stokes (RANS) with and without magnetic field to investigate turbulent flows in canonical as well as in the nozzle and mold geometries of the continuous casting process. The direct numerical simulations are first performed in channel, square and 2:1 aspect rectangular ducts to investigate the effect of magnetic field on turbulent flows. The rectangular duct is a more practical geometry for continuous casting nozzle and mold and has the option of applying magnetic field either perpendicular to broader side or shorter side. This work forms the part of a graphic processing unit (GPU) based CFD code (CU-FLOW) development for magnetohydrodynamic (MHD) turbulent flows. The DNS results revealed interesting effects of the magnetic field and its orientation on primary, secondary flows (instantaneous and mean), Reynolds stresses, turbulent kinetic energy (TKE) budgets, momentum budgets and frictional losses, besides providing DNS database for two-wall bounded square and rectangular duct MHD turbulent flows. Further, the low- and high-Reynolds number RANS models (k-ε and Reynolds stress models) are developed and tested with DNS databases for channel and square duct flows with and without magnetic field. The MHD sink terms in k- and ε-equations are implemented as proposed by Kenjereš and Hanjalić using a user defined function (UDF) in FLUENT. This work revealed varying accuracies of different RANS models at different levels. This work is useful for industry to understand the accuracies of these models, including continuous casting. After realizing the accuracy and computational cost of RANS models, the steady-state k-ε model is then combined with the particle image velocimetry (PIV) and impeller probe velocity measurements in a 1/3rd scale water model to study the flow quality coming out of the well- and mountain-bottom nozzles and the effect of stopper-rod misalignment on fluid flow. The mountain-bottom nozzle was found more prone to the longtime asymmetries and higher surface velocities. The left misalignment of stopper gave higher surface velocity on the right leading to significantly large number of vortices forming behind the nozzle on the left. Later, the transient and steady-state models such as LES, filtered URANS and steady RANS models are combined with ultrasonic Doppler velocimetry (UDV) measurements in a GaInSn model of typical continuous casting process. LES-CU-LOW is the fastest and the most accurate model owing to much finer mesh and a smaller timestep. This work provided a good understanding on the performance of these models. The behavior of instantaneous flows, Reynolds stresses and proper orthogonal decomposition (POD) analysis quantified the nozzle bottom swirl and its importance on the turbulent flow in the mold. Afterwards, the aforementioned work in GaInSn model is extended with electromagnetic braking (EMBr) to help optimize a ruler-type brake and its location for the continuous casting process. The magnetic field suppressed turbulence and promoted vortical structures with their axis aligned with the magnetic field suggesting tendency towards 2-d turbulence. The stronger magnetic field at the nozzle well and around the jet region created large scale and lower frequency flow behavior by suppressing nozzle bottom swirl and its front-back alternation. Based on this work, it is advised to avoid stronger magnetic field around jet and nozzle bottom to get more stable and less defect prone flow

    Zinc doped ferrite magnetic resonance imaging contrast agent for atherosclerosis

    Full text link
     This project focuses on the development of zinc doped ferrite nanoparticle based MRI contrast agents with enhanced contrast and site-specific targeting for atherosclerosis diagnosis. The engineered nanocomplexes developed were validated through MRI scans using rat models with potential for multimodal imaging and effective therapy

    Emerging engineered magnetic nanoparticulate probes for molecular MRI of atherosclerosis : how far have we come?

    Full text link
    Atherosclerosis is a chronic, progressive, immunoinflammatory disease of the large and medium-sized arteries, and a major cause of cardiovascular diseases. Atherosclerosis often progresses silently for decades until the occurrence of a major catastrophic clinical event such as myocardial infarction, cardiac arrest and stroke. The main challenge in the diagnosis and management of atherosclerosis is to develop a safe, noninvasive technique that is accurate and reproducible, which can detect the biologically active high-risk vulnerable plaques (with ongoing active inflammation, angiogenesis and apoptosis) before the occurrence of an acute clinical event. This Journal Article reviews the events involved in the pathogenesis of atherosclerosis in light of recently advanced understanding of the molecular pathogenesis of the disease. Next, we elaborate on the interesting developments in molecular MRI, by describing the recently engineered magnetic nanoparticulate probes targeting clinically promising molecular and cellular players/processes, involved in early atherosclerotic lesion formation to plaque rupture and erosion

    Correction to: Engineered atherosclerosis-specific zinc ferrite nanocomplex-based MRI contrast agents

    No full text
    After publication of the original article [1], the authors found that Figure 2e (Hsp70-Ch-Lf-ZF in Jurkat cells, 2 h), Figure 5b (HSP70-Lf-ZF) and Figure 5c (control) contained incorrect images. This does not affect the figure legends, results and conclusions of the article
    corecore