91 research outputs found

    Lactobacillus helveticus lafti l10 supplementation modulates mucosal and humoral immunity in elite athletes: a randomized, double-blind, placebo-controlled trial

    Get PDF
    To test the influence of probiotic supplementation on humoral immune response, a double-blind, placebo-controlled trial was conducted. Thirty athletes (24 males and 6 females, females: (V)over dotO(2)max 38.2 +/- 4.9 ml.kg(-1).min(-1), age 23.2 +/- 1.4 years; males: (V)over dotO(2)max 57.5 +/- 9.2 ml.kg(-1).min(-1), age 24.0 +/- 2.4 years, mean +/- SD) were randomized either to the probiotic group (Lactobacillus helveticus Lafti L10, 2 x 10(10) colony-forming units) or to the placebo group. Serum and saliva samples were collected at the baseline and after 14 weeks. Total and specific antibacterial antibody levels of IgM, IgG, and IgA classes were determined for different bacteria in the serum, and in saliva, total and specific antibacterial IgA levels were examined. Total IgM was elevated in both probiotic (18%, 15-20%; mean, 90% confidence interval; p = 0.02) and placebo group (35%, 22-47%; p = 0.02), without observed differences in changes between the groups. No significant changes in IgM levels specific for tested bacteria were found. Total IgG level was constant in both groups. A significant (16%, 22.8 to 35%, p = 0.04) reduction of anti-Enterococcus faecalis IgG was noted in the placebo group, in comparison with the probiotic group. There was a substantial decrease in total IgA level in the placebo group, when measured either in serum (15%, 12-18%, p = 0.04) or in saliva (35%, -1.4 to 53%, p = 0.03). Significantly reduced levels of serum anti-lactic acid bacteria IgA antibodies in the placebo group compared with the probiotic group were detected for Lactobacillus rhamnosus LA68 (24%, 5.8-42%, p = 0.02) and for L. rhamnosus LB64 (15%, 2.7-27%, p = 0.02). Probiotic administration could have beneficial effects on systemic humoral and mucosal immune responses

    Contact dermatitis and other skin conditions in instrumental musicians

    Get PDF
    BACKGROUND: The skin is important in the positioning and playing of a musical instrument. During practicing and performing there is a permanent more or less intense contact between the instrument and the musician's skin. Apart from aggravation of predisposed skin diseases (e.g., atopic eczema or psoriasis) due to music-making, specific dermatologic conditions may develop that are directly caused by playing a musical instrument. METHODS: To perform a systematic review on instrument-related skin diseases in musicians we searched the PubMed database without time limits. Furthermore we studied the online bibliography "Occupational diseases of performing artist. A performing arts medicine bibliography. October, 2003" and checked references of all selected articles for relevant papers. RESULTS: The most prevalent skin disorders of instrumental musicians, in particular string instrumentalists (e.g., violinists, cellists, guitarists), woodwind players (e.g., flautists, clarinetists), and brass instrumentalists (e.g., trumpeters), include a variety of allergic contact sensitizations (e.g., colophony, nickel, and exotic woods) and irritant (physical-chemical noxae) skin conditions whose clinical presentation and localization are usually specific for the instrument used (e.g., "fiddler's neck", "cellist's chest", "guitar nipple", "flautist's chin"). Apart from common callosities and "occupational marks" (e.g., "Garrod's pads") more or less severe skin injuries may occur in musical instrumentalists, in particular acute and chronic wounds including their complications. Skin infections such as herpes labialis seem to be a more common skin problem in woodwind and brass instrumentalists. CONCLUSIONS: Skin conditions may be a significant problem not only in professional instrumentalists, but also in musicians of all ages and ability. Although not life threatening they may lead to impaired performance and occupational hazard. Unfortunately, epidemiological investigations have exclusively been performed on orchestra musicians, though the prevalence of instrument-related skin conditions in other musician groups (e.g., jazz and rock musicians) is also of interest. The practicing clinician should be aware of the special dermatologic problems unique to the musical instrumentalist. Moreover awareness among musicians needs to be raised, as proper technique and conditioning may help to prevent affection of performance and occupational impairment

    Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota

    Get PDF
    In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported(1,2). In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis(3,4). Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa(3,4). These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication
    corecore