5 research outputs found

    Genetic polymorphisms associated with anti-malarial antibody levels in a low and unstable malaria transmission area in southern Sri Lanka

    Get PDF
    ABSTRACT: BACKGROUND: The incidence of malaria in Sri Lanka has significantly declined in recent years. Similar trends were seen in Kataragama, a known malaria endemic location within the southern province of the country, over the past five years. This is a descriptive study of anti-malarial antibody levels and selected host genetic mutations in residents of Kataragama, under low malaria transmission conditions. METHODS: Sera were collected from 1,011 individuals residing in Kataragama and anti-malarial antibodies and total IgE levels were measured by a standardized ELISA technique. Host DNA was extracted and used for genotyping of selected SNPs in known genes associated with malaria. The antibody levels were analysed in relation to the past history of malaria (during past 10 years), age, sex, the location of residence within Kataragama and selected host genetic markers. RESULTS: A significant increase in antibodies against Plasmodium falciparum antigens AMA1, MSP2, NANP and Plasmodium vivax antigen MSP1 in individuals with past history of malaria were observed when compared to those who did not. A marked increase of anti-MSP1(Pf) and anti-AMA1(Pv) was also evident in individuals between 45-59 years (when compared to other age groups). Allele frequencies for two SNPs in genes that code for IL-13 and TRIM-5 were found to be significantly different between those who have experienced one or more malaria attacks within past 10 years and those who did not. When antibody levels were classified into a low-high binary trait, significant associations were found with four SNPs for anti-AMA1(Pf); two SNPs for anti-MSP1(Pf); eight SNPs for anti-NANP(Pf); three SNPs for anti-AMA1(Pv); seven SNPs for anti-MSP1(Pv); and nine SNPs for total IgE. Eleven of these SNPs with significant associations with anti-malarial antibody levels were found to be non- synonymous. CONCLUSIONS: Evidence is suggestive of an age-acquired immunity in this study population in spite of low malaria transmission levels. Several SNPs were in linkage disequilibrium and had a significant association with elevated antibody levels, suggesting that these host genetic mutations might have an individual or collective effect on inducing or/and maintaining high anti-malarial antibody levels

    Host genetic polymorphisms and serological response against malaria in a selected population in Sri Lanka

    No full text
    Abstract Background Antibodies against the merozoite surface protein 1-19 (MSP1-19) and the apical membrane antigen 1 (AMA1) of the malaria parasite (Plasmodium vivax) are proven to be important in protection against clinical disease. Differences in the production/maintenance of antibodies may be due to many factors including host genetics. This paper discusses the association of 4 anti-malarial antibodies with selected host genetic markers. Methods Blood was collected from individuals (n = 242) with a history of malaria within past 15 years for DNA and serum. ELISA was carried out for serum to determine the concentration of anti-malarial antibodies MSP1-19 and AMA1 for both vivax and falciparum malaria. 170 SNPs related to malaria were genotyped. Associations between seropositivity, antibody levels and genetic, non-genetic factors were determined. Results Age ranged 13–74 years (mean age = 40.21 years). Majority were females. Over 90% individuals possessed either one or more type(s) of anti-malarial antibodies. Five SNPs were significantly associated with seropositivity. One SNP was associated with MSP1-19_Pv(rs739718); 4 SNPs with MSP1-19_Pf (rs6874639, rs2706379, rs2706381 and rs2075820) and1 with AMA1_Pv (rs2075820). Eleven and 7 genotypes (out of 15) were significantly associated with either presence or absence of antibodies. Three SNPs were found to be significantly associated with the antibody levels viz. rs17411697 with MSP1-19_Pv, rs2227491 with AMA1_Pv and rs229587 with AMA1_Pf. Linkage of the markers in the two groups was similar, but lower LOD scores were observed in seropositives compared to seronegatives. Discussion and conclusions The study suggests that several SNPs in the human genome that exist in Sri Lankan populations are significantly associated with anti-malarial antibodies, either with generation and/or maintenance of antibodies for longer periods, which can be due to either individual polymorphisms or most probably a combined effect of the markers

    Genetic polymorphisms associated with anti-malarial antibody levels in a low and unstable malaria transmission area in southern Sri Lanka

    No full text
    Abstract Background The incidence of malaria in Sri Lanka has significantly declined in recent years. Similar trends were seen in Kataragama, a known malaria endemic location within the southern province of the country, over the past five years. This is a descriptive study of anti-malarial antibody levels and selected host genetic mutations in residents of Kataragama, under low malaria transmission conditions. Methods Sera were collected from 1,011 individuals residing in Kataragama and anti-malarial antibodies and total IgE levels were measured by a standardized ELISA technique. Host DNA was extracted and used for genotyping of selected SNPs in known genes associated with malaria. The antibody levels were analysed in relation to the past history of malaria (during past 10 years), age, sex, the location of residence within Kataragama and selected host genetic markers. Results A significant increase in antibodies against Plasmodium falciparum antigens AMA1, MSP2, NANP and Plasmodium vivax antigen MSP1 in individuals with past history of malaria were observed when compared to those who did not. A marked increase of anti-MSP1(Pf) and anti-AMA1(Pv) was also evident in individuals between 45–59 years (when compared to other age groups). Allele frequencies for two SNPs in genes that code for IL-13 and TRIM-5 were found to be significantly different between those who have experienced one or more malaria attacks within past 10 years and those who did not. When antibody levels were classified into a low-high binary trait, significant associations were found with four SNPs for anti-AMA1(Pf); two SNPs for anti-MSP1(Pf); eight SNPs for anti-NANP(Pf); three SNPs for anti-AMA1(Pv); seven SNPs for anti-MSP1(Pv); and nine SNPs for total IgE. Eleven of these SNPs with significant associations with anti-malarial antibody levels were found to be non–synonymous. Conclusions Evidence is suggestive of an age–acquired immunity in this study population in spite of low malaria transmission levels. Several SNPs were in linkage disequilibrium and had a significant association with elevated antibody levels, suggesting that these host genetic mutations might have an individual or collective effect on inducing or/and maintaining high anti–malarial antibody levels.</p
    corecore