24 research outputs found

    Localization in Ultra Narrow Band IoT Networks: Design Guidelines and Trade-Offs

    No full text
    Localization in long-range Internet of Things networks is a challenging task, mainly due to the long distances and low bandwidth used. Moreover, the cost, power, and size limitations restrict the integration of a GPS receiver in each device. In this work, we introduce a novel received signal strength indicator (RSSI) based localization solution for ultra narrow band (UNB) long-range IoT networks such as Sigfox. The essence of our approach is to leverage the existence of a few GPS-enabled sensors (GSN)s in the network to split the wide coverage into classes, enabling RSSI based fingerprinting of other sensors (SN)s. By using machine learning algorithms at the network backed-end, the proposed approach does not impose extra power, payload, or hardware requirements. To comprehensively validate the performance of the proposed method, a measurement-based dataset that has been collected in the city of Antwerp is used. We show that a location classification accuracy of 80% is achieved by virtually splitting a city with a radius of 2.5km into seven classes. Moreover, separating classes, by increasing the spacing between them, brings the classification accuracy up-to 92% based on our measurements. Furthermore, when the density of GSN nodes is high enough to enable device-to-device communication, using multilateration, we improve the probability of localizing SNs with an error lower than 20m by 40% in our measurement scenario.status: publishe

    Unsupervised Wireless Spectrum Anomaly Detection with Interpretable Features

    No full text
    Detecting anomalous behavior in wireless spectrum is a demanding task due to the sheer complexity of the electromagnetic spectrum use. Wireless spectrum anomalies can take a wide range of forms from the presence of an unwanted signal in a licensed band to the absence of an expected signal, which makes manual labeling of anomalies difficult and suboptimal. We present, Spectrum Anomaly Detector with Interpretable FEatures (SAIFE), an Adversarial Autoencoder (AAE) based anomaly detector for wireless spectrum anomaly detection using Power Spectral Density (PSD) data. This model achieves an average anomaly detection accuracy above 80% at a constant false alram rate of 1% along with anomaly localization in an unsupervised setting. In addition, we investigate the model’s capabilities to learn interpretable features such as signal bandwidth, class and center frequency in a semi-supervised fashion. Along with anomaly detection the model exhibits promising results for lossy PSD data compression up to 120X and semi-supervised signal classification accuracy close to 100% on three datasets just using 20% labeled samples. Finally the model is tested on data from one of the distributed Electrosense sensors over a long term of 500 hours showing its anomaly detection capabilities.status: publishe
    corecore