16 research outputs found

    Virtual screening of synthesized thiazole derivatives for M. tuberculosis and dTDP-rhamnose inhibitors

    Get PDF
    To determine antimycobacterium and dTDP rhamnose inhibitor activity of the synthesized azetidinone, thiazolidinone derivatives of thiazole, we studied different derivatives for the activity. One pot synthesis of 2-amino-4-methylthiazole-5-carboxylic acid ethyl ester has been carried out and synthesized different derivative compounds. Compounds were tested for antimicrobial activity against different strains of microorganism and antitubercular activity against M. tuberculosis H37Rv. Compounds 7c, 7d, 7i, 8d, 8e, 8g and 8h, were showed antimicrobial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhosa using Gentamycin as standard, while 7b, 7e, 7f, 7i, 8b, 8e, 8f and 8i showed very strong antimycobacterial activity using rifampicine as a standard. Thiazole derivatives especially with carbonyl group scaffold inhibit an enzyme RmlC, which is an essential component for the biosynthesis of dTDP-rhamnose and produce good antimycobacterium and antimicrobial activity. Keywords: Thiazole, thiazolidinone derivatives, azetidinone derivative, well diffusion method, broth microdilution assay, antitubercular activity, antimicrobial activity

    Characterization of nickel sulphide thin films prepared by modified chemical method

    No full text
    Semiconducting nickel sulphide (NiS) thin films were deposited onto glass substrates using a new modified chemical bath method (MCBD). The MCBD is the solutions grow technique in which substrates are immersed in cations and anions alternatively and film growth takes place on the substrates. The preparative conditions such as concentration, pH, temperature, immersion time, immersion cycles, etc are optimized to get nanocrystalline NiS films. The characterization of the films was carried out by using X-ray diffraction, scanning electron microscopy, optical absorption and electrical resistivity. The XRD analysis of the as-grown NiS films showed hexagonal structure. The average grain size is found to be 14 nm. Electrical resistivity measurements showed semiconducting nature with at room temperature resistivity which is found to be of the order of 10 Ωcm for as-deposited NiS films. Scanning electron micrographs (SEM) reveal a very dense surface structure with the presence of irregular shaped grain particles of size ~200 nm. The optical absorption studies show that the absorption coefficient of the NiS thin film is high and a direct band gap of ~2.4 eV has been observed

    Neurology

    No full text
    Objective To use network science to model complex diet relationships a decade before onset of dementia in a large French cohort, the 3-City Bordeaux study. Methods We identified cases of dementia incident to the baseline food frequency questionnaire over 12 years of follow-up. For each case, we randomly selected 2 controls among individuals at risk at the age at case diagnosis and matched for age at diet assessment, sex, education, and season of the survey. We inferred food networks in both cases and controls using mutual information, a measure to detect nonlinear associations, and compared food consumption patterns between groups. Results In the nested case-control study, the mean (SD) duration of follow-up and number of visits were 5.0 (2.5) vs 4.9 (2.6) years and 4.1 (1.0) vs 4.4 (0.9) for cases (n = 209) vs controls (n = 418), respectively. While there were few differences in simple, average food intakes, food networks differed substantially between cases and controls. The network in cases was focused and characterized by charcuterie as the main hub, with connections to foods typical of French southwestern diet and snack foods. In contrast, the network of controls included several disconnected subnetworks reflecting diverse and healthier food choices. Conclusion How foods are consumed (and not only the quantity consumed) may be important for dementia prevention. Differences in predementia diet networks, suggesting worse eating habits toward charcuterie and snacking, were evident years before diagnosis in this cohort. Network methods, which are designed to model complex systems, may advance our understanding of risk factors for dementia

    Hadoop Spark Based Hydrogen Bond Analysis Tool (H-BAT) for Molecular Dynamics Simulation Trajectory Data

    No full text
    Molecular dynamics (MD) is a computational technique that works on the Newton\u27s equations of motion to study the dynamics of various biomolecules and, is commonly used by structural biologists. With the development of advanced simulation techniques and increasing computing power, large amounts of data are being generated from these simulations. Various enhanced sampling techniques are currently being used, that are able to capture rare events and generate simulation data in the form of multiple trajectories. Analyzing the simulation trajectory data and extracting meaningful information using the traditional sequential post-simulation data analysis methods are becoming increasingly untenable. Currently, molecular dynamics simulation algorithms that are scalable on high-performance computing clusters are available which generate a huge amount of MD data in short span of time. The need of the hour lies in developing a advanced and high-performance analytics platform based tool that can analyze this huge simulation data in a faster and more efficient way. The Hadoop Spark framework, provides an excellent platform that meets these requirements of handling large amounts of data parallely and perform analytics with high scalability. In this study, a tool name H-BAT has been developed using the Hadoop Spark platform to calculate hydrogen bonding within all solute-solute, solute-solvent and solvent-solvent molecules in large MD simulation trajectories. Vector geometry has been used for calculation of angle and distance between the atoms which are present in the form of triplets of filtered atoms taking part in hydrogen bond formation. The benchmarking was performed up to a data size of 48 GB which showed linear scalability. Additionally, the tool is capable of handling multiple similar trajectories simultaneously. Future enhancement of the tool would include various other analysis like normal mode analysis, RMSD, 2DRMSD and Water Density Analysis using the Hadoop Spark framework.<br /

    A novel method for resolution of amlodipine

    No full text
    The present invention relates to an industrially feasible and cost-efficient process for the preparation of isomerically pure S-amlodipine besylate hemipentahydrate (1), a useful calcium antagonist inhibitor. Previous workers reported that R-amlodipine-tartrate was crystallized out preferentially from the reaction mixture when naturally occurring L-tartaric acid and racemic amlodipine base in DMSO are mixed. In order to crystallize S-amlodipine-tartrate, the use of unnatural D-tartaric acid as a resolving agent in DMSO was required. However, the cost of D-tartaric acid was not conducive to overall cost efficiency in the resolution protocol. Subsequent to the above observations, we have developed a novel resolving system in which amlodipine base with natural L-tartaric acid in DMF as a solvent gave preferentially the S-form of amlodipine tartrate directly from the reaction. The optimization of this approach by adjusting the water percentage in DMF ensured consistent purity of S-amlodipine (+99%) and satisfactory resolution efficiency
    corecore