19 research outputs found

    Single-Pot Reductive Rearrangement of Furfural to Cyclopentanone over Silica-Supported Pd Catalysts

    No full text
    Direct one-pot hydrogenation of furfural (FFR) to cyclopentanone (CPO) was investigated over different silica-supported Pd catalysts. Among these, 4% Pd on fumed silica (4%Pd/f-SiO2) showed remarkable results, achieving almost 98% furfural (FFR) conversion with ∼89% selectivity and 87% yield to cyclopentanone at 165 °C and 500 psig H2 pressure. More interestingly, the fumed-silica-supported catalyst tuned the selectivity toward the rearrangement product, i.e., cyclopentanone, whereas all of the other supports were found to give ring hydrogenation as well as side chain hydrogenation products due to their parent Brönsted acidity and specific support properties. X-ray diffraction data revealed the presence of different phases of the face-centered cubic lattice of metallic Pd along with lowest crystallite size of 15.6 nm in the case of the silica-supported Pd catalyst. However, Pd particle size was found to be in the range of 5–13 nm with even dispersion over the silica support, confirmed by high-resolution transmission electron microscopy analysis. While studying the effect of reaction parameters, it was observed that lower temperature gave low furfural conversion of 58% with only 51% CPO selectivity. Similarly, higher H2 pressure lowered CPO selectivity with subsequent increase in 2-methyl furan and ring hydrogenation product 2-methyl furan and 2-methyl tetrahydrofuran. Thus, as per the requirement, the product selectivity can be tuned by varying the type of support and/or the reaction parameters suitably. With the help of several control experiments and the characterization data, a plausible reaction pathway was proposed for the selective formation of cyclopentanone

    Correction to “Two-Dimensional Bi<sub>2</sub>WO<sub>6</sub> Nanosheets as a Robust Catalyst toward Photocyclization”

    No full text
    Correction to “Two-Dimensional Bi<sub>2</sub>WO<sub>6</sub> Nanosheets as a Robust Catalyst toward Photocyclization

    Two-Dimensional Bi<sub>2</sub>WO<sub>6</sub> Nanosheets as a Robust Catalyst toward Photocyclization

    No full text
    The present work describes the improved photocatalytic activity of cetyl trimethylammonium bromide (CTAB)-assisted Bi<sub>2</sub>WO<sub>6</sub> (CBTH) toward the synthesis of bioactive benzazoles. X-ray diffraction analysis of CBTH suggests that crystal growth has occurred along the (200) plane, whereas field-emission scanning electron microscopy images confirm two-dimensional rose bud morphology and high-resolution transmission electron microscopy analysis suggests the formation of thin nanosheets possessing an orthorhombic structure. Temperature-programmed desorption of ammonia and Py-IR measurements indicate substantial acidity with the generation of Brønsted acid sites on the surface of CBTH. Raman spectra of CBTH also corroborate these observations with the formation of defects within [Bi<sub>2</sub>O<sub>2</sub>]<sup>2+</sup> layers, resulting in decreased thickness and shapes of nanoplates. These beneficial properties are explored toward the photochemical synthesis of benzazoles using a 35 W tungsten lamp and a CBTH photocatalyst, resulting in better yields at lesser exposure time. It is observed that the catalytic activity is retained up to five consecutive cycles with marginal decrease in % yield. Such a feature can be ascribed to the photostability of the photocatalyst even after continuous exposure to light, implying that the surface active sites remained unaltered as evident from the X-ray photoelectron spectroscopy analysis of pre- and post-characterization of CBTH. Moreover, decrease in the surface hydroxyl groups after five catalytic cycles also accounts for the generation of enhanced Brønsted sites owing to the presence of Bi–O on the surface of CBTH. It exhibits better catalytic activity as compared to other photocatalysts employed for the synthesis of benzazoles. Thus, CBTH serves as a robust photocatalyst for the facile synthesis of these heterocycles in a sustainable manner

    Cascade synthesis of dihydrobenzofuran via Claisen rearrangement of allyl aryl ethers using FeCl3/MCM-41 catalyst

    No full text
    Dihydrobenzofuran as one of the active ingredients of the naturally occurring motif is synthesized by using in situ generation of ortho allyl phenols. Aryl allyl ethers on reacting with catalytic amounts of non noble metal iron (III) chloride supported on MCM-41 under moderate reaction conditions yield dihydrobenzofuran. First step via Claisen rearrangement gives ortho allyl phenol followed by its in situ cyclization to yield dihydrobenzofuran in very good yields. Both Lewis as well as Brønsted acidity of the catalyst as evidenced by Py-FTIR studies was found to catalyze the cascade synthesis of dihydrobenzofuran. The scope of the present strategy was successfully demonstrated for several substrates with varying electronic effects for the synthesis of corresponding dihydrobenzofuran with high yields in a range of 71–86%. Keywords: Claisen rearrangement, Dihydrobenzofuran, Aryl allyl ether, MCM-41, Ferric chlorid

    Reductive Cyclization of Levulinic Acid to γ‑Valerolactone over Non-Noble Bimetallic Nanocomposite

    No full text
    Bimetallic nanoparticles have diverse applications in catalytic processes owing to the differences in individual properties that contribute to their increased catalytic activity. To further improve the efficiency, they are dispersed in an inert support that enhances the catalytic activity toward organic transformations. In this study, we report simple, facile, and cost-effective chemical route for the fabrication of nanocomposites with Fe–Ni bimetallic nanoparticles supported on montmorillonite (MMT) possessing variation in the Fe and Ni content. These composites are characterized with X-ray diffraction, transmission electron microscopy surface area, and NH<sub>3</sub>-TPD. Fe–Ni bimetallic nanoparticles are well-dispersed within MMT structure having particle sizes of about 30–40 nm. Among various compositions of Fe–Ni/MMT catalysts, composite with 25% Fe and 25% Ni exhibits >99% LA conversion with 98% selectivity to GVL within 1 h. IPA is found to be better solvent for levulinic acid (LA) to γ-valerolactone (GVL) conversion, while substantial leaching of iron takes place when water is used as a solvent. It is observed that bimetallic sites are responsible for reduction of LA, while strong acidic sites of MMT are favoring subsequent cyclization to GVL. XPS analysis of fresh and reused Fe–Ni/MMT composites suggest that the catalyst surface does not undergo any chemical change during successive cycles, and the catalytic activity is retained up to six cycles. The plausible mechanism for LA to GVL conversion involves reductive cyclization processes through formation of levulinate ester that undergoes lactonization due to synergism in bimetallic nanoparticles and MMT clay

    Synthesis, Characterization and In Vitro Study of Biocompatible Cinnamaldehyde Functionalized Magnetite Nanoparticles (CPGF Nps) For Hyperthermia and Drug Delivery Applications in Breast Cancer

    No full text
    <div><p>Cinnamaldehyde, the bioactive component of the spice cinnamon, and its derivatives have been shown to possess anti-cancer activity against various cancer cell lines. However, its hydrophobic nature invites attention for efficient drug delivery systems that would enhance the bioavailability of cinnamaldehyde without affecting its bioactivity. Here, we report the synthesis of stable aqueous suspension of cinnamaldehyde tagged Fe<sub>3</sub>O<sub>4</sub> nanoparticles capped with glycine and pluronic polymer (CPGF NPs) for their potential application in drug delivery and hyperthermia in breast cancer. The monodispersed superparamagnetic NPs had an average particulate size of ∼20 nm. TGA data revealed the drug payload of ∼18%. Compared to the free cinnamaldehyde, CPGF NPs reduced the viability of breast cancer cell lines, MCF7 and MDAMB231, at lower doses of cinnamaldehyde suggesting its increased bioavailability and in turn its therapeutic efficacy in the cells. Interestingly, the NPs were non-toxic to the non-cancerous HEK293 and MCF10A cell lines compared to the free cinnamaldehyde. The novelty of CPGF nanoparticulate system was that it could induce cytotoxicity in both ER/PR positive/Her2 negative (MCF7) and ER/PR negative/Her2 negative (MDAMB231) breast cancer cells, the latter being insensitive to most of the chemotherapeutic drugs. The NPs decreased the growth of the breast cancer cells in a dose-dependent manner and altered their migration through reduction in MMP-2 expression. CPGF NPs also decreased the expression of VEGF, an important oncomarker of tumor angiogenesis. They induced apoptosis in breast cancer cells through loss of mitochondrial membrane potential and activation of caspase-3. Interestingly, upon exposure to the radiofrequency waves, the NPs heated up to 41.6°C within 1 min, suggesting their promise as a magnetic hyperthermia agent. All these findings indicate that CPGF NPs prove to be potential nano-chemotherapeutic agents in breast cancer.</p></div

    Response of CPGF NPs to the radiofrequency waves for hyperthermia application.

    No full text
    <p>CPGF NPs exhibit hyperthermia potential. Response of Fe<sub>3</sub>O<sub>4</sub> (F), Glycine (G), Pluronic (P), Cinnamaldehyde (C) and CPGF NPs to the radiofrequency waves have been depicted. The NPs showed a significant rise in the temperature to 41.6°C within a time span of 1 min.</p
    corecore