25 research outputs found

    Global, regional, and national burden of other musculoskeletal disorders, 1990–2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021

    Get PDF
    Background Musculoskeletal disorders include more than 150 different conditions affecting joints, muscles, bones, ligaments, tendons, and the spine. To capture all health loss from death and disability due to musculoskeletal disorders, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) includes a residual musculoskeletal category for conditions other than osteoarthritis, rheumatoid arthritis, gout, low back pain, and neck pain. This category is called other musculoskeletal disorders and includes, for example, systemic lupus erythematosus and spondylopathies. We provide updated estimates of the prevalence, mortality, and disability attributable to other musculoskeletal disorders and forecasted prevalence to 2050. Methods Prevalence of other musculoskeletal disorders was estimated in 204 countries and territories from 1990 to 2020 using data from 68 sources across 23 countries from which subtraction of cases of rheumatoid arthritis, osteoarthritis, low back pain, neck pain, and gout from the total number of cases of musculoskeletal disorders was possible. Data were analysed with Bayesian meta-regression models to estimate prevalence by year, age, sex, and location. Years lived with disability (YLDs) were estimated from prevalence and disability weights. Mortality attributed to other musculoskeletal disorders was estimated using vital registration data. Prevalence was forecast to 2050 by regressing prevalence estimates from 1990 to 2020 with Socio-demographic Index as a predictor, then multiplying by population forecasts. Findings Globally, 494 million (95% uncertainty interval 431–564) people had other musculoskeletal disorders in 2020, an increase of 123·4% (116·9–129·3) in total cases from 221 million (192–253) in 1990. Cases of other musculoskeletal disorders are projected to increase by 115% (107–124) from 2020 to 2050, to an estimated 1060 million (95% UI 964–1170) prevalent cases in 2050; most regions were projected to have at least a 50% increase in cases between 2020 and 2050. The global age-standardised prevalence of other musculoskeletal disorders was 47·4% (44·9–49·4) higher in females than in males and increased with age to a peak at 65–69 years in male and female sexes. In 2020, other musculoskeletal disorders was the sixth ranked cause of YLDs globally (42·7 million [29·4–60·0]) and was associated with 83 100 deaths (73 600–91 600). Interpretation Other musculoskeletal disorders were responsible for a large number of global YLDs in 2020. Until individual conditions and risk factors are more explicitly quantified, policy responses to this burden remain a challenge. Temporal trends and geographical differences in estimates of non-fatal disease burden should not be overinterpreted as they are based on sparse, low-quality data.publishedVersio

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    The effect of Allium sativum on ischemic preconditioning and ischemia reperfusion induced cardiac injury

    No full text
    In the present study, the effect of garlic (Allium sativum) extract on ischemic preconditioning and ischemia-reperfusion induced cardiac injury has been studied. Hearts from adult albino rats of Wistar strain were isolated and immediately mounted on Langendorff's apparatus for retrograde perfusion. After 15 minutes of stabilization, the hearts were subjected to four episodes of 5 min ischemia, interspersed with 5 min reperfusion (to complete the protocol of ischemic preconditioning), 30 min global ischemia, followed by 120 min of reperfusion. In the control and treated groups, respective interventions were given instead of ischemic preconditioning. The magnitude of cardiac injury was quantified by measuring Lactate Dehydrogenase and creatine kinase concentration in the coronary effluent and myocardial infarct size by macroscopic volume method. Our study demonstrates that garlic extract exaggerates the cardio protection offered by ischemic preconditioning and per se treatment with garlic extract also protects the myocardium against ischemia reperfusion induced cardiac injury

    Electrochemical treatment of high strength chrome bathwater: A comparative study for best-operating conditions

    No full text
    In this study, high strength chromium (1500 ​ppm) wastewater was treated by electrochemical and chemical precipitation. Preliminary experiments using synthetic wastewater were carried out to optimize the process parameters viz. pH, current density and treatment time by systematically varying these variables as per response surface methodology (RSM) approach. The results showed that 97.5% chromium removal efficiency was achieved under optimized process conditions, i.e. pH 5, current density 68 A/m2 and treatment time 17 ​min. The electrolyte concentration beyond 4 ​g/L does not significantly improve chromium removal efficiency. The optimized process conditions from simulated solution were used to treat real chrome bathwater, but due to the highly acidic nature of the chrome bath, negligible chromium removal was obtained. Thus, two industrial wastewater management approaches were used to improve the chromium removal efficiency (i) dilution of the chrome bathwater (ii) chemical precipitation before electrocoagulation. Electrocoagulation treatment of five-fold diluted chrome bathwater has 99.9% chromium removal efficiency in 55 ​min of treatment time consuming specific energy consumption (SEC) of 10.3 ​KWh/kg of chromium. By integration of chemical precipitation and electrochemical treatment, the chromium removal efficiency of 97.3% was observed in 240 ​min of treatment time with SEC of 27.3 ​kWh/kg of chromium. Integration of reduction-precipitation before electrochemical treatment is another choice, in contrast, to sample dilution with an option for retrofitting of existing treatment schemes

    Role of water in cyclooxygenase catalysis and design of anti-inflammatory agents targeting two sites of the enzyme

    No full text
    Abstract While designing the anti-inflammatory agents targeting cyclooxygenase-2 (COX-2), we first identified a water loop around the heme playing critical role in the enzyme catalysis. The results of molecular dynamic studies supported by the strong hydrogen-bonding equilibria of the participating atoms, radical stabilization energies, the pKa of the H-donor/acceptor sites and the cyclooxygenase activity of pertinent muCOX-2 ravelled the working of the water–peptide channel for coordinating the flow of H·/electron between the heme and Y385. Based on the working of H·/electron transfer channel between the 12.5 Å distant radical generation and the radical disposal sites, a series of molecules was designed and synthesized. Among this category of compounds, an appreciably potent anti-inflammatory agent exhibiting IC50 0.06 μM against COX-2 and reversing the formalin induced analgesia and carageenan induced inflammation in mice by 90% was identified. Further it was revealed that, justifying its bidentate design, the compound targets water loop (heme bound site) and the arachidonic acid binding pockets of COX-2

    <span style="font-size:11.0pt;font-family: "Times New Roman";mso-fareast-font-family:"Times New Roman";mso-bidi-font-family: Mangal;mso-ansi-language:EN-GB;mso-fareast-language:EN-US;mso-bidi-language: HI" lang="EN-GB">Effect of <i style="mso-bidi-font-style:normal">Aegle marmelos</i> (L.) Correa on alloxan induced early stage diabetic nephropathy in rats</span>

    No full text
    464-469Diabetic nephropathy (DN) has a complex pathogenesis and poor prognosis due to the lack of therapeutic interventions. The present study investigates the effect of A. marmelos leaf extract (AME) on early alloxan induced DN. The treatment with AME was found to significantly decrease the fasting blood sugar, total cholesterol, blood urea, creatinine and renal TBARS and increased the levels of renal reduced glutathione and catalase significantly as compared to the diabetic control group. The maximum dose-dependent protection was observed at a dose of 200 mg kg-1. Histological examination revealed marked reversal of the morphological derangements with AME treatment as indicated by a decrease in glomerular expansion, tubular dilatation and inflammatory cells. The present results conclude that AME treatment has a significant ameliorative effect on early changes induced in the kidneys by alloxan and improves the outcome of DN
    corecore