14 research outputs found

    Immunological observations and transcriptomic analysis of trimester-specific full-term placentas from three Zika virus-infected women.

    Get PDF
    OBJECTIVES: Effects of Zika virus (ZIKV) infection on placental development during pregnancy are unclear. METHODS: Full-term placentas from three women, each infected with ZIKV during specific pregnancy trimesters, were harvested for anatomic, immunologic and transcriptomic analysis. RESULTS: In this study, each woman exhibited a unique immune response with raised IL-1RA, IP-10, EGF and RANTES expression and neutrophil numbers during the acute infection phase. Although ZIKV NS3 antigens co-localised to placental Hofbauer cells, the placentas showed no anatomic defects. Transcriptomic analysis of samples from the placentas revealed that infection during trimester 1 caused a disparate cellular response centred on differential eIF2 signalling, mitochondrial dysfunction and oxidative phosphorylation. Despite these, the babies were delivered without any congenital anomalies. CONCLUSION: These findings should translate to improve clinical prenatal screening procedures for virus-infected pregnant patients

    Dependency of NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis.

    Get PDF
    Cancer cells undergo transcriptional reprogramming to drive tumor progression and metastasis. Using cancer cell lines and patient-derived tumor organoids, we demonstrate that loss of the negative elongation factor (NELF) complex inhibits breast cancer development through downregulating epithelial-mesenchymal transition (EMT) and stemness-associated genes. Quantitative multiplexed Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins (qPLEX-RIME) further reveals a significant rewiring of NELF-E-associated chromatin partners as a function of EMT and a co-option of NELF-E with the key EMT transcription factor SLUG. Accordingly, loss of NELF-E leads to impaired SLUG binding on chromatin. Through integrative transcriptomic and genomic analyses, we identify the histone acetyltransferase, KAT2B, as a key functional target of NELF-E-SLUG. Genetic and pharmacological inactivation of KAT2B ameliorate the expression of EMT markers, phenocopying NELF ablation. Elevated expression of NELF-E and KAT2B is associated with poorer prognosis in breast cancer patients, highlighting the clinical relevance of our findings. Taken together, we uncover a crucial role of the NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis

    Differential mucosal tropism and dissemination of classical and hypervirulent Klebsiella pneumoniae infection

    No full text
    Summary: Klebsiella pneumoniae (Kp) infection is an important healthcare concern. The ST258 classical (c)Kp strain is dominant in hospital-acquired infections in North America and Europe, while ST23 hypervirulent (hv)Kp prevails in community-acquired infections in Asia. This study aimed to develop symptomatic mucosal infection models in mice that mirror natural infections in humans to gain a deeper understanding of Kp mucosal pathogenesis. We showed that cKp replicates in the nasal cavity instead of the lungs, and this early infection event is crucial for the establishment of chronic colonization in the cecum and colon. In contrast, hvKp replicates directly in the lungs to lethal bacterial load, and early infection of esophagus supported downstream transient colonization in the ileum and cecum. Here, we have developed an in vivo model that illuminates how differences in Kp tropism are responsible for virulence and disease phenotype in cKp and hvKp, providing the basis for further mechanistic study

    Fetal liver CD34+ contain human immune and endothelial progenitors and mediate solid tumor rejection in NOG mice

    No full text
    Abstract Background Transplantation of CD34+ hematopoietic stem and progenitor cells (HSPC) into immunodeficient mice is an established method to generate humanized mice harbouring a human immune system. Different sources and methods for CD34+ isolation have been employed by various research groups, resulting in customized models that are difficult to compare. A more detailed characterization of CD34+ isolates is needed for a better understanding of engraftable hematopoietic and potentially non-hematopoietic cells. Here we have performed a direct comparison of CD34+ isolated from cord blood (CB-CD34+) or fetal liver (FL-CD34+ and FL-CD34+CD14−) and their engraftment into immunocompromised NOD/Shi-scid Il2rg null (NOG) mice. Methods NOG mice were transplanted with either CB-CD34+, FL-CD34+ or FL-CD34+CD14− to generate CB-NOG, FL-NOG and FL-CD14−-NOG, respectively. After 15–20 weeks, the mice were sacrificed and human immune cell reconstitution was assessed in blood and several organs. Liver sections were pathologically assessed upon Haematoxylin and Eosin staining. To assess the capability of allogenic tumor rejection in CB- vs. FL-reconstituted mice, animals were subcutaneously engrafted with an HLA-mismatched melanoma cell line. Tumor growth was assessed by calliper measurements and a Luminex-based assay was used to compare the cytokine/chemokine profiles. Results We show that CB-CD34+ are a uniform population of HSPC that reconstitute NOG mice more rapidly than FL-CD34+ due to faster B cell development. However, upon long-term engraftment, FL-NOG display increased numbers of neutrophils, dendritic cells and macrophages in multiple tissues. In addition to HSPC, FL-CD34+ isolates contain non-hematopoietic CD14+ endothelial cells that enhance the engraftment of the human immune system in FL-NOG mice. We demonstrate that these CD14+CD34+ cells are capable of reconstituting Factor VIII-producing liver sinusoidal endothelial cells (LSEC) in FL-NOG. However, CD14+CD34+ also contribute to hepatic sinusoidal dilatation and immune cell infiltration, which may culminate in a graft-versus-host disease (GVHD) pathology upon long-term engraftment. Finally, using an HLA-A mismatched CDX melanoma model, we show that FL-NOG, but not CB-NOG, can mount a graft-versus-tumor (GVT) response resulting in tumor rejection. Conclusion Our results highlight important phenotypical and functional differences between CB- and FL-NOG and reveal FL-NOG as a potential model to study hepatic sinusoidal dilatation and mechanisms of GVT

    Mutating chikunguny a virus non-structural proteinproduces potent live-attenuated vaccine candidate

    No full text
    Currently, there are no commercially available live‐attenuated vaccines against chikungunya virus (CHIKV ). Here, CHIKV s with mutations in non‐structural proteins (nsPs) were investigated for their suitability as attenuated CHIKV vaccines. R532H mutation in nsP1 caused reduced infectivity in mouse tail fibroblasts but an enhanced type‐I IFN response compared to WT ‐CHIKV . Adult mice infected with this nsP‐mutant exhibited a mild joint phenotype with low‐level viremia that rapidly cleared. Mechanistically, ingenuity pathway analyses revealed a tilt in the anti‐inflammatory IL ‐10 versus pro‐inflammatory IL ‐1β and IL ‐18 balance during CHIKV nsP‐mutant infection that modified acute antiviral and cell signaling canonical pathways. Challenging CHIKV nsP‐mutant‐infected mice with WT ‐CHIKV or the closely related O'nyong‐nyong virus resulted in no detectable viremia, observable joint inflammation, or damage. Challenged mice showed high antibody titers with efficient neutralizing capacity, indicative of immunological memory. Manipulating molecular processes that govern CHIKV replication could lead to plausible vaccine candidates against alphavirus infection

    CD8+ T Cells Trigger Auricular Dermatitis and Blepharitis in Mice after Zika Virus Infection in the Absence of CD4+ T Cells.

    No full text
    Zika virus (ZIKV) became a public health concern when it re-emerged in 2015 owing to its ability to cause congenital deformities in the fetus and neurological complications in adults. Despite extensive data on protection, the interplay of protective and pathogenic adaptive immune responses toward ZIKV infection remains poorly understood. In this study, using a T-cell‒deficient mouse model that retains persistent ZIKV viral titers in the blood and organs, we show that the adoptive transfer of CD8+ T cells led to a significant reduction in viral load. This mouse model reveals that ZIKV can induce grossly visible auricular dermatitis and blepharitis, mediated by ZIKV-specific CD8+ T cells. Single-cell RNA sequencing of these causative CD8+ T cells from the ears shows an overactivated and elevated cytotoxic signature in mice with severe symptoms. Our results strongly suggest a role for CD8+ T-cell‒associated pathologies after ZIKV infection in CD4+ T-cell‒immunodeficient patients
    corecore