47 research outputs found

    Las17p–Vrp1p but not Las17p–Arp2/3 interaction is important for actin patch polarization in yeast

    Get PDF
    AbstractThe actin cytoskeleton plays a central role in many important cellular processes such as cell polarization, cell division and endocytosis. The dynamic changes to the actin cytoskeleton that accompany these processes are regulated by actin-associated proteins Wiskott–Aldrich Syndrome Protein (WASP) (known as Las17p in yeast) and WASP-Interacting Protein (WIP) (known as Vrp1p in yeast). Both yeast and human WASP bind to and stimulate the Arp2/3 complex which in turn nucleates assembly of actin monomers into filaments at polarized sites at the cortex. WASP–WIP interaction in yeast and humans are important for Arp2/3 complex stimulation in vitro. It has been proposed that these interactions are also important for polarized actin assembly in vivo. However, the redundancy of actin-associated proteins has made it difficult to test this hypothesis. We have identified two point mutations (L80T and H94L) in yeast WASP that in combination abolish WASP–WIP interaction in yeast. We also identify an N-terminal fragment of Las17p (N-Las17p1–368) able to interact with Vrp1p but not Arp2/3. Using these mutant and truncated forms of yeast WASP we provide novel evidence that WASP interaction with WIP is more important than interaction with Arp2/3 for polarized actin assembly and endocytosis in yeast

    Activity of a novel protonophore against methicillin-resistant Staphylococcus aureus

    Get PDF
    Aim: Compound 1-(4-chlorophenyl)-4,4,4-trifluoro-3-hydroxy-2-buten-1-one (compound 1) was identified as a hit against methicillin-resistant Staphylococcus aureus (MRSA) strain MW2. Methods & results: The MIC of compound 1 against MRSA was 4 μg/ml. The compound showed enhanced activity at acidic pH by lowering bacterial intracellular pH and exhibited no lysis of human red blood cells at up to 64 μg/ml and its IC50 against HepG2 cells was 32 μg/ml. The compound reduced 1-log10 colony forming units of intracellular MRSA in macrophages and prolonged the survival of MRSA-infected Caenorhabditis elegans (p = 0.0015) and Galleria mellonella (p = 0.0002). Conclusion: Compound 1 is a protonophore with potent in vitro and in vivo activity against MRSA and no toxicity in mammalian cells up to 8 μg/ml that warrants further investigation as a novel antibacterial

    Insulin receptor substrate protein 53kDa (IRSp53) is a negative regulator of myogenic differentiation

    No full text
    Fusion of mononucleated myoblasts to generate multinucleated myotubes is a critical step in skeletal muscle development. Filopodia, the actin cytoskeleton based membrane protrusions, have been observed early during myoblast fusion, indicating that they could play a direct role in myogenic differentiation. The control of filopodia formation in myoblasts remains poorly understood. Here we show that the expression of IRSp53 (Insulin Receptor Substrate protein 53 kDa), a known regulator of filopodia formation, is down-regulated during differentiation of both mouse primary myoblasts and a mouse myoblast cell line C2C12. Over-expression of IRSp53 in C2C12 cells led to induction of filopodia and decrease in cell adhesion, concomitantly with inhibition of myogenic differentiation. In contrast, knocking down the IRSp53 expression in C2C12 cells led to a small but significant increase in myotube development. The decreased cell adhesion of C2C12 cells over-expressing IRSp53 is correlated with a reduction in the number of vinculin patches in these cells. Mutations in the conserved IMD domain (IRSp53 and MIM (missing in metastasis) homology domain) or SH3 domain of IRSp53 abolished the ability of this protein to inhibit myogenic differentiation and reduce cell adhesion. Over-expression of the IMD domain alone was sufficient to decrease the cell–extracellular matrix adhesion and to inhibit myogenesis in a manner dependent on its function in membrane shaping. Based on our data, we propose that IRSp53 is a negative regulator of myogenic differentiation which correlates with the observed down regulation of IRSp53 expression during myoblast differentiation to myotubes

    Antibacterial properties of 3-(phenylsulfonyl)-2-pyrazinecarbonitrile

    Get PDF
    The emergence of multidrug-resistant bacterial strains has heightened the need for new antimicrobial agents based on novel chemical scaffolds that are able to circumvent current modes of resistance. We recently developed a whole-animal drug-screening methodology in pursuit of this goal and now report the discovery of 3-(phenylsulfonyl)-2-pyrazinecarbonitrile (PSPC) as a novel antibacterial effective against resistant nosocomial pathogens. The minimum inhibitory concentrations (MIC) of PSPC against Staphylococcus aureus and Enterococcus faecium were 4 μg/mL and 8 μg/mL, respectively, whereas the MICs were higher against the Gram-negative bacteria Klebsiella pneumoniae (64 μg/mL), Acinetobacter baumannii (32 μg/mL), Pseudomonas aeruginosa (\u3e64 μg/mL), and Enterobacter spp. (\u3e64 μg/mL). However, co-treatment of PSPC with the efflux pump inhibitor phenylalanine arginyl β-naphthylamide (PAβN) or with sub-inhibitory concentrations of the lipopeptide antibiotic polymyxin B reduced the MICs of PSPC against the Gram-negative strains by \u3e4-fold. A sulfide analog of PSPC (PSPC-1S) showed no antibacterial activity, whereas the sulfoxide analog (PSPC-6S) showed identical activity as PSPC across all strains, confirming structure-dependent activity for PSPC and suggesting a target-based mechanism of action. PSPC displayed dose dependent toxicity to both Caenorhabditis elegans and HEK-293 mammalian cells, culminating with a survival rate of 16% (100 μg/mL) and 8.5% (64 μg/mL), respectively, at the maximum tested concentration. However, PSPC did not result in hemolysis of erythrocytes, even at a concentration of 64 μg/mL. Together these results support PSPC as a new chemotype suitable for further development of new antibiotics against Gram-positive and Gram-negative bacteria

    On the mechanism of berberine-INF55 (5-Nitro-2-phenylindole) hybrid antibacterials

    Get PDF
    Berberine-INF55 hybrids are a promising class of antibacterials that combine berberine and the NorA multidrug resistance pump inhibitor INF55 (5-nitro-2-phenylindole) together in one molecule via a chemically stable linkage. Previous studies demonstrated the potential of these compounds for countering efflux-mediated antibacterial drug resistance but they didn\u27t establish whether the compounds function as originally intended, i.e. with the berberine moiety providing antibacterial activity and the attached INF55 component independently blocking multidrug resistance pumps, thereby enhancing the activity of berberine by reducing its efflux. We hypothesised that if the proposed mechanism is correct, then hybrids carrying more potent INF55 pump inhibitor structures should show enhanced antibacterial effects relative to those bearing weaker inhibitors. Two INF55 analogues showing graded reductions in NorA inhibitory activity compared with INF55 were identified and their corresponding berberine-INF55 hybrids carrying equivalent INF55 inhibitor structures synthesised. Multiple assays comparing the antibacterial effects of the hybrids and their corresponding berberine-INF55 analogue combinations showed that the three hybrids all show very similar activities, leading us to conclude that the antibacterial mechanism(s) of berberine-INF55 hybrids is different from berberine-INF55 combinations

    NH125 eradicates MRSA biofilms.

    No full text
    <p>(A) MRSA biofilms formed on 13 mm cellulose ester membranes for 24 hours were treated with 10X MIC of vancomycin (Van) or NH125 for 24 h. Survival was measured by comparing the number of viable cells in biofilms between non-treated and treated samples. (B) MRSA biofilms grown in a 96-well microtiter plate for 48 h were treated with the indicated concentration of vancomycin or NH125 for 24 h. The remaining biofilms were stained with 0.1% crystal violet dissolved with 95% ethanol and OD<sub>590 nm</sub> was measured. Results are shown as means ± s.d.; n = 3.</p

    Distinguishing properties of weak slice conditions

    No full text
    The slice condition and the more general weak slice conditions are geometric conditions on Euclidean space domains which have evolved over the last several years as a tool in various areas of analysis. This paper explores some of the ner distinctive properties of the various weak slice conditions
    corecore