94 research outputs found

    CNS activity of Pokeweed Anti-viral Protein (PAP) in mice infected with Lymphocytic Choriomeningitis Virus (LCMV)

    Get PDF
    BACKGROUND: Others and we have previously described the potent in vivo and in vitro activity of the broad-spectrum antiviral agent PAP (Pokeweed antiviral protein) against a wide range of viruses. The purpose of the present study was to further elucidate the anti-viral spectrum of PAP by examining its effects on the survival of mice challenged with lymphocytic choriomeningitis virus (LCMV). METHODS: We examined the therapeutic effect of PAP in CBA mice inoculated with intracerebral injections of the WE54 strain of LCMV at a 1000 PFU dose level that is lethal to 100% of mice within 7–9 days. Mice were treated either with vehicle or PAP administered intraperitoneally 24 hours prior to, 1 hour prior to and 24 hours, 48 hours 72 hours and 96 hours after virus inoculation. RESULTS: PAP exhibits significant in vivo anti- LCMV activity in mice challenged intracerebrally with an otherwise invariably fatal dose of LCMV. At non-toxic dose levels, PAP significantly prolonged survival in the absence of the majority of disease-associated symptoms. The median survival time of PAP-treated mice was >21 days as opposed to 7 days median survival for the control (p = 0.0069). CONCLUSION: Our results presented herein provide unprecedented experimental evidence that PAP exhibits antiviral activity in the CNS of LCMV-infected mice

    In vitro template-change PCR to create single crossover libraries: a case study with B. thuringiensis Cry2A toxins

    Get PDF
    During evolution the creation of single crossover chimeras between duplicated paralogous genes is a known process for increasing diversity. Comparing the properties of homologously recombined chimeras with one or two crossovers is also an efficient strategy for analyzing relationships between sequence variation and function. However, no well-developed in vitro method has been established to create single-crossover libraries. Here we present an in vitro template-change polymerase change reaction that has been developed to enable the production of such libraries. We applied the method to two closely related toxin genes from B. thuringiensis and created chimeras with differing properties that can help us understand how these toxins are able to differentiate between insect species

    Role of the Two Component Signal Transduction System CpxAR in Conferring Cefepime and Chloramphenicol Resistance in Klebsiella pneumoniae NTUH-K2044

    Get PDF
    Background: Klebsiella pneumoniae is a Gram-negative, non-motile, facultative anaerobe belonging to the Enterobacteriaceae family of the c-Proteobacteria class in the phylum Proteobacteria. Multidrug resistant K. pneumoniae have caused major therapeutic problems worldwide due to emergence of extended-spectrum b-lactamase producing strains. Twocomponent systems serve as a basic stimulus-response coupling mechanism to allow organisms to sense and respond to changes in many different environmental conditions including antibiotic stress. Principal Findings: In the present study, we investigated the role of an uncharacterized cpxAR operon in bacterial physiology and antimicrobial resistance by generating isogenic mutant (DcpxAR) deficient in the CpxA/CpxR component derived from the hyper mucoidal K1 strain K. pneumoniae NTUH-K2044. The behaviour of DcpxAR was determined under hostile conditions, reproducing stresses encountered in the gastrointestinal environment and deletion resulted in higher sensitivity to bile, osmotic and acid stresses. The DcpxAR was more susceptible to b-lactams and chloramphenicol than the wild-type strain, and complementation restored the altered phenotypes. The relative change in expression of acrB, acrD, eefB efflux genes were decreased in cpxAR mutant as evidenced by qRT-PCR. Comparison of outer membrane protein profiles indicated a conspicuous difference in the knock out background. Gel shift assays demonstrated direct binding of CpxR KP to promoter region of ompC KP in a concentration dependent manner

    The KNee OsteoArthritis Prediction (KNOAP2020) challenge:An image analysis challenge to predict incident symptomatic radiographic knee osteoarthritis from MRI and X-ray images

    Get PDF
    Objectives: The KNee OsteoArthritis Prediction (KNOAP2020) challenge was organized to objectively compare methods for the prediction of incident symptomatic radiographic knee osteoarthritis within 78 months on a test set with blinded ground truth. Design: The challenge participants were free to use any available data sources to train their models. A test set of 423 knees from the Prevention of Knee Osteoarthritis in Overweight Females (PROOF) study consisting of magnetic resonance imaging (MRI) and X-ray image data along with clinical risk factors at baseline was made available to all challenge participants. The ground truth outcomes, i.e., which knees developed incident symptomatic radiographic knee osteoarthritis (according to the combined ACR criteria) within 78 months, were not provided to the participants. To assess the performance of the submitted models, we used the area under the receiver operating characteristic curve (ROCAUC) and balanced accuracy (BACC). Results: Seven teams submitted 23 entries in total. A majority of the algorithms were trained on data from the Osteoarthritis Initiative. The model with the highest ROCAUC (0.64 (95% confidence interval (CI): 0.57–0.70)) used deep learning to extract information from X-ray images combined with clinical variables. The model with the highest BACC (0.59 (95% CI: 0.52–0.65)) ensembled three different models that used automatically extracted X-ray and MRI features along with clinical variables. Conclusion: The KNOAP2020 challenge established a benchmark for predicting incident symptomatic radiographic knee osteoarthritis. Accurate prediction of incident symptomatic radiographic knee osteoarthritis is a complex and still unsolved problem requiring additional investigation.</p

    A Low Concentration of Ethanol Impairs Learning but Not Motor and Sensory Behavior in Drosophila Larvae

    Get PDF
    Drosophila melanogaster has proven to be a useful model system for the genetic analysis of ethanol-associated behaviors. However, past studies have focused on the response of the adult fly to large, and often sedating, doses of ethanol. The pharmacological effects of low and moderate quantities of ethanol have remained understudied. In this study, we tested the acute effects of low doses of ethanol (∼7 mM internal concentration) on Drosophila larvae. While ethanol did not affect locomotion or the response to an odorant, we observed that ethanol impaired associative olfactory learning when the heat shock unconditioned stimulus (US) intensity was low but not when the heat shock US intensity was high. We determined that the reduction in learning at low US intensity was not a result of ethanol anesthesia since ethanol-treated larvae responded to the heat shock in the same manner as untreated animals. Instead, low doses of ethanol likely impair the neuronal plasticity that underlies olfactory associative learning. This impairment in learning was reversible indicating that exposure to low doses of ethanol does not leave any long lasting behavioral or physiological effects

    ADP is the Dominant Controller of AMPactivated Protein Kinase Activity Dynamics in Skeletal Muscle during Exercise

    Get PDF
    Exercise training elicits profound metabolic adaptations in skeletal muscle cells. A key molecule in coordinating these adaptations is AMP-activated protein kinase (AMPK), whose activity increases in response to cellular energy demand. AMPK activity dynamics are primarily controlled by the adenine nucleotides ADP and AMP, but how each contributes to its control in skeletal muscle during exercise is unclear. We developed and validated a mathematical model of AMPK signaling dynamics, and then applied global parameter sensitivity analyses with data-informed constraints to predict that AMPK activity dynamics are determined principally by ADP and not AMP. We then used the model to predict the effects of two additional direct-binding activators of AMPK, ZMP and Compound 991, further validating the model and demonstrating its applicability to understanding AMPK pharmacology. The relative effects of direct-binding activators can be understood in terms of four properties, namely their concentrations, binding affinities for AMPK, abilities to enhance AMPK phosphorylation, and the magnitudes of their allosteric activation of AMPK. Despite AMP’s favorable values in three of these four properties, ADP is the dominant controller of AMPK activity dynamics in skeletal muscle during exercise by virtue of its higher concentration compared to that of AMP
    corecore