19 research outputs found

    Effect of knocking down the insulin receptor on mouse rod responses.

    Get PDF
    Previous experiments have shown that the insulin receptor (IR) is expressed in mammalian rods and contributes to the protection of photoreceptors during bright-light exposure. The role of the insulin receptor in the production of the light response is however unknown. We have used suction-electrode recording to examine the responses of rods after conditionally knocking down the insulin receptor. Our results show that these IR knock-down rods have an accelerated decay of the light response and a small decrease in sensitivity by comparison to littermate WT rods. Our results indicate that the insulin receptor may have some role in controlling the rate of rod response decay, but they exclude a major role of the insulin receptor pathway in phototransduction

    Protein tyrosine phosphatase-1B regulates the tyrosine phosphorylation of the adapter Grb2-associated binder 1 (Gab1) in the retina

    Get PDF
    Abstract Background Gab1 (Grb2-associated binder 1) is a key coordinator that belongs to the insulin receptor substrate-1 like family of adaptor molecules and is tyrosine phosphorylated in response to various growth factors, cytokines, and numerous other molecules. Tyrosine phosphorylated Gab1 is able to recruit a number of signaling effectors including PI3K, SHP2 and PLC-γ. In this study, we characterized the localization and regulation of tyrosine phosphorylation of Gab1 in the retina. Results Our immuno localization studies suggest that Gab1 is expressed in rod photoreceptor inner segments. We found that hydrogen peroxide activates the tyrosine phosphorylation of Gab1 ex vivo and hydrogen peroxide has been shown to inhibit the protein tyrosine phosphatase PTP1B activity. We found a stable association between the D181A substrate trap mutant of PTP1B and Gab1. Our studies suggest that PTP1B interacts with Gab1 through Tyrosine 83 and this residue may be the major PTP1B target residue on Gab1. We also found that Gab1 undergoes a light-dependent tyrosine phosphorylation and PTP1B regulates the phosphorylation state of Gab1. Consistent with these observations, we found an enhanced Gab1 tyrosine phosphorylation in PTP1B deficient mice and also in retinas treated ex vivo with a PTP1B specific allosteric inhibitor. Conclusions Our laboratory has previously reported that retinas deficient of PTP1B are resistant to light damage compared to wild type mice. Since Gab1 is negatively regulated by PTP1B, a part of the retinal neuroprotective effect we have observed previously in PTP1B deficient mice could be contributed by Gab1 as well. In summary, our data suggest that PTP1B regulates the phosphorylation state of retinal Gab1 in vivo

    Phosphoinositides: Minor Lipids Make a Major Impact on Photoreceptor Cell Functions

    Get PDF
    Activation of the phosphoinositide (PI) cycle generates the second messengers that control various aspects of cellular signaling. We have previously shown that two PI cycle enzymes, type II phosphatidylinositol 5-phosphate 4-kinase (PIPK IIα) and phosphoinositide 3-kinase (PI3K), are activated through light stimulation. In our earlier studies, we measured enzyme activities, instead of directly measuring the products, due to lack of sensitive analytical techniques. Cells have very low levels of PIs, compared to other lipids, so special techniques and sensitive analytical instruments are necessary for their identification and quantification. There are also other considerations, such as different responses in different cell types, which may complicate quantification of PIs. For example, although light activated PIPK IIα, there was no increase in PI-4,5-P2 measured by liquid chromatography-mass spectrometry (LC/MS) This discrepancy is due to the heterogeneous nature of the retina, which is composed of various cell types. In this study, we examined PI generation in situ using immunohistochemistry with specific PI antibodies. PIs were generated in specific retinal cell layers, suggesting that analyzing PIs from the total retina by LC/MS underscores the significance. This suggests that PI-specific antibodies are useful tools to study the cell-specific regulation of PIs in the retina

    Lipid Nanoparticles for Ocular Gene Delivery

    No full text
    Lipids contain hydrocarbons and are the building blocks of cells. Lipids can naturally form themselves into nano-films and nano-structures, micelles, reverse micelles, and liposomes. Micelles or reverse micelles are monolayer structures, whereas liposomes are bilayer structures. Liposomes have been recognized as carriers for drug delivery. Solid lipid nanoparticles and lipoplex (liposome-polycation-DNA complex), also called lipid nanoparticles, are currently used to deliver drugs and genes to ocular tissues. A solid lipid nanoparticle (SLN) is typically spherical, and possesses a solid lipid core matrix that can solubilize lipophilic molecules. The lipid nanoparticle, called the liposome protamine/DNA lipoplex (LPD), is electrostatically assembled from cationic liposomes and an anionic protamine-DNA complex. The LPD nanoparticles contain a highly condensed DNA core surrounded by lipid bilayers. SLNs are extensively used to deliver drugs to the cornea. LPD nanoparticles are used to target the retina. Age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy are the most common retinal diseases in humans. There have also been promising results achieved recently with LPD nanoparticles to deliver functional genes and micro RNA to treat retinal diseases. Here, we review recent advances in ocular drug and gene delivery employing lipid nanoparticles

    Insulin receptor regulates photoreceptor CNG channel activity

    No full text
    Photoreceptor cyclic nucleotide gated (CNG) channels are critical elements in phototransduction and light adaptation. Here we report that insulin receptor (IR), an integral membrane protein, directly phosphorylates the CNGA1 subunit of CNG channels that in turn affects the function of these channels negatively. The IR phosphorylates Tyr⁴⁹⁸ and Tyr⁵⁰³ residues on CNGA1 that are situated at the membrane-cytoplasmic interface. The IR tyrosine kinase activity is essential for the inhibition of CNG channel. To maintain the channels in an off state, it is necessary not only to have a precise balance of the cGMP levels but also to have a control on the cGMP sensitivity of the CNG channels itself. In this study, we observed that the channel opens at a lower concentration of cGMP in IR⁻/⁻ mice. These studies suggest that IR regulates the modulation of CNG channel activity in vivo.10 page(s

    Insulin receptor regulates photoreceptor CNG channel activity

    No full text

    Modulation of Mouse Rod Photoreceptor Responses by Grb14 Protein*

    No full text
    Previous experiments have indicated that growth factor receptor-bound protein 14 (Grb14) may modulate rod photoreceptor cGMP-gated channels by decreasing channel affinity for cGMP; however, the function of Grb14 in rod physiology is not known. In this study, we examined the role of Grb14 by recording electrical responses from rods in which the gene for the Grb14 protein had been deleted. Suction-electrode recordings from single mouse rods showed that responses of dark-adapted Grb14(-/-) mice to brief flashes decayed more rapidly than strain-controlled wild type (WT) rods, with decreased values of both integration time and the exponential time course of decay (τREC). This result is consistent with an increase in channel affinity for cGMP produced by deletion of Grb14. However, Grb14(-/-) mouse rods also showed little change in dark current and a large and significant decrease in the limiting time constant τD, which are not consistent with an effect on channel affinity but seem rather to indicate modulation of the rate of inactivation of cyclic nucleotide phosphodiesterase 6 (PDE6). Grb14 has been reported to translocate from the inner to the outer segment in bright light, but we saw effects on response time course even in dark-adapted rods, although the effects were somewhat greater after rods had been adapted by exposure to bleaching illumination. Our results indicate that the mechanism of Grb14 action may be more complex than previously realized

    Phosphoinositide Lipids in Ocular Tissues

    No full text
    Inositol phospholipids play an important role in cell physiology. The inositol head groups are reversibly phosphorylated to produce seven distinct phosphorylated inositides, commonly referred to as phosphoinositides (PIs). These seven PIs are dynamically interconverted from one PI to another by the action of PI kinases and PI phosphatases. The PI signals regulate a wide variety of cellular functions, including organelle distinction, vesicular transport, cytoskeletal organization, nuclear events, regulation of ion channels, cell signaling, and host–pathogen interactions. Most of the studies of PIs in ocular tissues are based on the PI enzymes and PI phosphatases. In this study, we examined the PI levels in the cornea, retinal pigment epithelium (RPE), and retina using PI-binding protein as probes. We have examined the lipids PI(3)P, PI(4)P, PI(3,4)P2, PI(4,5)P2, and PI(3,4,5)P3, and each is present in the cornea, RPE, and retina. Alterations in the levels of these PIs in mouse models of retinal disease and corneal infections have been reported, and the results of our study will help in the management of anomalous phosphoinositide metabolism in ocular tissues

    Light activation of the insulin receptor regulates mitochondrial hexokinase. A possible mechanism of retinal neuroprotection

    No full text
    The serine/threonine kinase Akt has been shown to mediate the anti-apoptotic activity through hexokinase(HK)–mitochondria interaction. We previously reported that Akt activation in retinal rod photoreceptor cells is mediated through the light-dependent insulin receptor (IR)/PI3K pathway. Our data indicate that lightinduced activation of IR/PI3K/Akt results in the translocation of HK-II to mitochondria. We also found that PHLPPL, a serine/threonine phosphatase, enhanced the binding of HK-II to mitochondria. We found a mitochondrial targeting signal in PHLPPL and our study suggests that Akt translocation to mitochondria could be mediated through PHLPPL. Our results suggest that the light-dependent IR/PI3K/Akt pathway regulates hexokinase– mitochondria interaction in photoreceptors. Down-regulation of IR signaling has been associated with ocular diseases of retinitis pigmentosa, diabetic retinopathy, and Leber Congenital Amaurosis-type 2, and agents that enhance the binding interaction between hexokinase and mitochondria may have therapeutic potential against these ocular diseases.11 page(s
    corecore