8 research outputs found

    Critical interfaces of the Ashkin-Teller model at the parafermionic point

    Get PDF
    We present an extensive study of interfaces defined in the Z_4 spin lattice representation of the Ashkin-Teller (AT) model. In particular, we numerically compute the fractal dimensions of boundary and bulk interfaces at the Fateev-Zamolodchikov point. This point is a special point on the self-dual critical line of the AT model and it is described in the continuum limit by the Z_4 parafermionic theory. Extending on previous analytical and numerical studies [10,12], we point out the existence of three different values of fractal dimensions which characterize different kind of interfaces. We argue that this result may be related to the classification of primary operators of the parafermionic algebra. The scenario emerging from the studies presented here is expected to unveil general aspects of geometrical objects of critical AT model, and thus of c=1 critical theories in general.Comment: 15 pages, 3 figure

    Conformal Curves in Potts Model: Numerical Calculation

    Full text link
    We calculated numerically the fractal dimension of the boundaries of the Fortuin-Kasteleyn clusters of the qq-state Potts model for integer and non-integer values of qq on the square lattice. In addition we calculated with high accuracy the fractal dimension of the boundary points of the same clusters on the square domain. Our calculation confirms that this curves can be described by SLEκ_{\kappa}.Comment: 11 Pages, 4 figure

    Three Dimensional Ising Model, Percolation Theory and Conformal Invariance

    Full text link
    The fractal structure and scaling properties of a 2d slice of the 3d Ising model is studied using Monte Carlo techniques. The percolation transition of geometric spin (GS) clusters is found to occur at the Curie point, reflecting the critical behavior of the 3d model. The fractal dimension and the winding angle statistics of the perimeter and external perimeter of the geometric spin clusters at the critical point suggest that, if conformally invariant in the scaling limit, they can be described by the theory of Schramm-Loewner evolution (SLE_\kappa) with diffusivity of \kappa=5 and 16/5, respectively, putting them in the same universality class as the interfaces in 2d tricritical Ising model. It is also found that the Fortuin-Kasteleyn (FK) clusters associated with the cross sections undergo a nontrivial percolation transition, in the same universality class as the ordinary 2d critical percolation.Comment: 5 pages, 5 figures, accepted for publication in EuroPhysics Letters (EPL

    On R\ue9nyi entropies of disjoint intervals in conformal field theory

    Get PDF
    We study the R\ue9nyi entropies of N disjoint intervals in the conformal field theories describing the free compactified boson and the Ising model. They are computed as the 2N-point function of twist fields, by employing the partition function of the model on a particular class of Riemann surfaces. The results are written in terms of Riemann theta functions. The prediction for the free boson in the decompactification regime is checked against exact results for the harmonic chain. For the Ising model, matrix product state computations agree with the conformal field theory result once the finite size corrections have been taken into account. \ua9 2014 IOP Publishing Ltd and SISSA Medialab srl

    Entanglement negativity in the critical Ising chain

    Get PDF
    We study the scaling of the traces of the integer powers of the partially transposed reduced density matrix Tr(rho(T2)(A))Th and of the entanglement negativity for two spin blocks as a function of their length and separation in the critical Ising chain. For two adjacent blocks, we show that tensor network calculations agree with universal conformal field theory (CFT) predictions. In the case of two disjoint blocks the CFT predictions are recovered only after taking into account the finite size corrections induced by the finite length of the blocks

    Entanglement negativity in extended systems: a field theoretical approach

    Get PDF
    We report on a systematic approach for the calculation of the negativity in the ground state of a one-dimensional quantum field theory. The partial transpose rho(T2)(A) of the reduced density matrix of a subsystem A = A(1) boolean OR A(2) is explicitly constructed as an imaginary-time path integral and from this the replicated traces Tr(rho(T2)(A))(n) are obtained. The logarithmic negativity epsilon = log parallel to rho(T2)(A)parallel to is then the continuation to n --> 1 of the traces of the even powers. For pure states, this procedure reproduces the known results. We then apply this method to conformally invariant field theories (CFTs) in several different physical situations for infinite and finite systems and without or with boundaries. In particular, in the case of two adjacent intervals of lengths l(1), l(2) in an infinite system, we derive the result epsilon similar to (c/4) ln(l(1)l(2)/(l(1) + l(2))), where c is the central charge. For the more complicated case of two disjoint intervals, we show that the negativity depends only on the harmonic ratio of the four end points and so is manifestly scale invariant. We explicitly calculate the scale invariant functions for the replicated traces in the case of the CFT for the free compactified boson, but we have not so far been able to obtain the n --> 1 continuation for the negativity even in the limit of large compactification radius. We have checked all our findings against exact numerical results for the harmonic chain which is described by a non-compactified free boson

    Entanglement Entropy from a Holographic Viewpoint

    Get PDF
    The entanglement entropy has been historically studied by many authors in order to obtain quantum mechanical interpretations of the gravitational entropy. The discovery of AdS/CFT correspondence leads to the idea of holographic entanglement entropy, which is a clear solution to this important problem in gravity. In this article, we would like to give a quick survey of recent progresses on the holographic entanglement entropy. We focus on its gravitational aspects, so that it is comprehensible to those who are familiar with general relativity and basics of quantum field theory.Comment: Latex, 30 pages, invited review for Classical and Quantum Gravity, minor correction
    corecore