9 research outputs found
Integrating Diverse Information to Gain More Insight into Microarray Analysis
Microarray technology provides an opportunity to view transcriptions at genomic level under different conditions controlled by an experiment. From an array experiment using a human cancer cell line that is engineered to differ in expression of tumor antigen, integrin α6β4, few hundreds of differentially expressed genes are selected and are clustered using one of several standard algorithms. The set of genes in a cluster is expected to have similar expression patterns and are most likely to be coregulated and thereby expected to have similar function. The highly expressed set of upregulated genes become candidates for further evaluation as potential biomarkers. Besides these benefits, microarray experiment by itself does not help us to understand or discover potential pathways or to identify important set of genes for potential drug targets. In this paper we discuss about integrating protein-to-protein interaction information, pathway information with array expression data set to identify a set of “important” genes, and potential signal transduction networks that help to target and reverse the oncogenic phenotype induced by tumor antigen such as integrin α6β4. We will illustrate the proposed method with our recent microarray experiment conducted for identifying transcriptional targets of integrin α6β4 for cancer progression
Proceedings of the Fourth Annual Conference of the MidSouth Computational Biology and Bioinformatics Society
<p/> <p/> <p/
Metric for Measuring the Effectiveness of Clustering of DNA Microarray Expression
BACKGROUND: The recent advancement of microarray technology with lower noise and better affordability makes it possible to determine expression of several thousand genes simultaneously. The differentially expressed genes are filtered first and then clustered based on the expression profiles of the genes. A large number of clustering algorithms and distance measuring matrices are proposed in the literature. The popular ones among them include hierarchal clustering and k-means clustering. These algorithms have often used the Euclidian distance or Pearson correlation distance. The biologists or the practitioners are often confused as to which algorithm to use since there is no clear winner among algorithms or among distance measuring metrics. Several validation indices have been proposed in the literature and these are based directly or indirectly on distances; hence a method that uses any of these indices does not relate to any biological features such as biological processes or molecular functions. RESULTS: In this paper we have proposed a metric to measure the effectiveness of clustering algorithms of genes by computing inter-cluster cohesiveness and as well as the intra-cluster separation with respect to biological features such as biological processes or molecular functions. We have applied this metric to the clusters on the data set that we have created as part of a larger study to determine the cancer suppressive mechanism of a class of chemicals called retinoids. We have considered hierarchal and k-means clustering with Euclidian and Pearson correlation distances. Our results show that genes of similar expression profiles are more likely to be closely related to biological processes than they are to molecular functions. The findings have been supported by many works in the area of gene clustering. CONCLUSION: The best clustering algorithm of genes must achieve cohesiveness within a cluster with respect to some biological features, and as well as maximum separation between clusters in terms of the distribution of genes of a behavioral group across clusters. We claim that our proposed metric is novel in this respect and that it provides a measure of both inter and intra cluster cohesiveness. Best of all, computation of the proposed metric is easy and it provides a single quantitative value, which makes comparison of different algorithms easier. The maximum cluster cohesiveness and the maximum intra-cluster separation are indicated by the metric when its value is 0. We have demonstrated the metric by applying it to a data set with gene behavioral groupings such as biological process and molecular functions. The metric can be easily extended to other features of a gene such as DNA binding sites and protein-protein interactions of the gene product, special features of the intron-exon structure, promoter characteristics, etc. The metric can also be used in other domains that use two different parametric spaces; one for clustering and the other one for measuring the effectiveness