23 research outputs found

    Stochastic De-repression of Rhodopsins in Single Photoreceptors of the Fly Retina

    Get PDF
    The photoreceptors of the Drosophila compound eye are a classical model for studying cell fate specification. Photoreceptors (PRs) are organized in bundles of eight cells with two major types – inner PRs involved in color vision and outer PRs involved in motion detection. In wild type flies, most PRs express a single type of Rhodopsin (Rh): inner PRs express either Rh3, Rh4, Rh5 or Rh6 and outer PRs express Rh1. In outer PRs, the K50 homeodomain protein Dve is a key repressor that acts to ensure exclusive Rh expression. Loss of Dve results in de-repression of Rhodopsins in outer PRs, and leads to a wide distribution of expression levels. To quantify these effects, we introduce an automated image analysis method to measure Rhodopsin levels at the single cell level in 3D confocal stacks. Our sensitive methodology reveals cell-specific differences in Rhodopsin distributions among the outer PRs, observed over a developmental time course. We show that Rhodopsin distributions are consistent with a two-state model of gene expression, in which cells can be in either high or basal states of Rhodopsin production. Our model identifies a significant role of post-transcriptional regulation in establishing the two distinct states. The timescale for interconversion between basal and high states is shown to be on the order of days. Our results indicate that even in the absence of Dve, the Rhodopsin regulatory network can maintain highly stable states. We propose that the role of Dve in outer PRs is to buffer against rare fluctuations in this network

    Valuing Health Gain from Composite Response Endpoints for Multisystem Diseases

    Get PDF
    Objectives: This study aimed to demonstrate how to estimate the value of health gain after patients with a multisystem disease achieve a condition-specific composite response endpoint. Methods: Data from patients treated in routine practice with an exemplar multisystem disease (systemic lupus erythematosus) were extracted from a national register (British Isles Lupus Assessment Group Biologics Register). Two bespoke composite response endpoints (Major Clinical Response and Improvement) were developed in advance of this study. Difference-in-differences regression compared health utility values (3-level version of EQ-5D; UK tariff) over 6 months for responders and nonresponders. Bootstrapped regression estimated the incremental quality-adjusted life-years (QALYs), probability of QALY gain after achieving the response criteria, and population monetary benefit of response. Results: Within the sample (n = 171), 18.2% achieved Major Clinical Response and 49.1% achieved Improvement at 6 months. Incremental health utility values were 0.0923 for Major Clinical Response and 0.0454 for Improvement. Expected incremental QALY gain at 6 months was 0.020 for Major Clinical Response and 0.012 for Improvement. Probability of QALY gain after achieving the response criteria was 77.6% for Major Clinical Response and 72.7% for Improvement. Population monetary benefit of response was £1 106 458 for Major Clinical Response and £649 134 for Improvement. Conclusions: Bespoke composite response endpoints are becoming more common to measure treatment response for multisystem diseases in trials and observational studies. Health technology assessment agencies face a growing challenge to establish whether these endpoints correspond with improved health gain. Health utility values can generate this evidence to enhance the usefulness of composite response endpoints for health technology assessment, decision making, and economic evaluation

    International nosocomial infection control consortium (INICC) report, data summary of 36 countries, for 2004-2009

    Get PDF
    The results of a surveillance study conducted by the International Nosocomial Infection Control Consortium (INICC) from January 2004 through December 2009 in 422 intensive care units (ICUs) of 36 countries in Latin America, Asia, Africa, and Europe are reported. During the 6-year study period, using Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN; formerly the National Nosocomial Infection Surveillance system [NNIS]) definitions for device-associated health care-associated infections, we gathered prospective data from 313,008 patients hospitalized in the consortium's ICUs for an aggregate of 2,194,897 ICU bed-days. Despite the fact that the use of devices in the developing countries' ICUs was remarkably similar to that reported in US ICUs in the CDC's NHSN, rates of device-associated nosocomial infection were significantly higher in the ICUs of the INICC hospitals; the pooled rate of central line-associated bloodstream infection in the INICC ICUs of 6.8 per 1,000 central line-days was more than 3-fold higher than the 2.0 per 1,000 central line-days reported in comparable US ICUs. The overall rate of ventilator-associated pneumonia also was far higher (15.8 vs 3.3 per 1,000 ventilator-days), as was the rate of catheter-associated urinary tract infection (6.3 vs. 3.3 per 1,000 catheter-days). Notably, the frequencies of resistance of Pseudomonas aeruginosa isolates to imipenem (47.2% vs 23.0%), Klebsiella pneumoniae isolates to ceftazidime (76.3% vs 27.1%), Escherichia coli isolates to ceftazidime (66.7% vs 8.1%), Staphylococcus aureus isolates to methicillin (84.4% vs 56.8%), were also higher in the consortium's ICUs, and the crude unadjusted excess mortalities of device-related infections ranged from 7.3% (for catheter-associated urinary tract infection) to 15.2% (for ventilator-associated pneumonia). Copyright © 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved
    corecore