207 research outputs found

    New Algorithm for Clustering Distributed Data Using k-Means

    Get PDF
    The internet era and high speed networks have ushered in the capabilities to have ready access to large amounts of geographically distributed data. Individuals, businesses, and governments recognize the value of this available resource to those who can transform the data into information. These databases, though valuable as individual entities, become significantly more valuable when they function as parts of a federated database and their data can be aggregated for collective mining or computations. This requires new algorithms to shift their focus from working with single databases to efficiently working with federated databases. In this paper, we propose a new decomposable version of the popular k-means clustering algorithm that works in this desired manner with a set of networked databases. We show that it is possible to perform global computation in a reasonably secure manner for either horizontally or vertically distributed databases. The computation is completed by only exchanging a few local summaries among the databases. An empirical and analytical validation of our results is also presented

    Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mosquitoes are intermediate hosts for numerous disease causing organisms. Vector control is one of the most investigated strategy for the suppression of mosquito-borne diseases. <it>Anopheles stephensi </it>is one of the vectors of malaria parasite <it>Plasmodium vivax</it>. The parasite undergoes major developmental and maturation steps within the mosquito midgut and little is known about <it>Anopheles</it>-associated midgut microbiota. Identification and characterization of the mosquito midgut flora is likely to contribute towards better understanding of mosquito biology including longevity, reproduction and mosquito-pathogen interactions that are important to evolve strategies for vector control mechanisms.</p> <p>Results</p> <p>Lab-reared and field-collected <it>A. stephensi </it>male, female and larvae were screened by "culture-dependent and culture-independent" methods. Five 16S rRNA gene library were constructed form lab and field-caught <it>A. stephensi </it>mosquitoes and a total of 115 culturable isolates from both samples were analyzed further. Altogether, 68 genera were identified from midgut of adult and larval <it>A. stephensi</it>, 53 from field-caught and 15 from lab-reared mosquitoes. A total of 171 and 44 distinct phylotypes having 85 to 99% similarity with the closest database matches were detected among field and lab-reared <it>A. stephensi </it>midgut, respectively. These OTUs had a Shannon diversity index value of 1.74–2.14 for lab-reared and in the range of 2.75–3.49 for field-caught <it>A. stephensi </it>mosquitoes. The high species evenness values of 0.93 to 0.99 in field-collected adult and larvae midgut flora indicated the vastness of microbial diversity retrieved by these approaches. The dominant bacteria in field-caught adult male <it>A. stephensi </it>were uncultured <it>Paenibacillaceae </it>while in female and in larvae it was <it>Serratia marcescens</it>, on the other hand in lab-reared mosquitoes, <it>Serratia marcescens </it>and <it>Cryseobacterium meninqosepticum </it>bacteria were found to be abundant.</p> <p>Conclusion</p> <p>More than fifty percent of the phylotypes were related to uncultured class of bacteria. Interestingly, several of the bacteria identified are related to the known symbionts in other insects. Few of the isolates identified in our study are found to be novel species within the gammaproteobacteria which could not be phylogenetically placed within known classes. To the best of our knowledge, this is the first attempt to study the midgut microbiota of <it>A. stephensi </it>from lab-reared and field-collected adult and larvae using "culture-dependent and independent methods".</p

    Knockdown of Aminopeptidase-N from Helicoverpa armigera Larvae and in Transfected Sf21 Cells by RNA Interference Reveals Its Functional Interaction with Bacillus thuringiensis Insecticidal Protein Cry1Ac

    Get PDF
    Aminopeptidase-N (APN) and cadherin proteins located at the midgut epithelium of Helicoverpa armigera have been implicated as receptors for the Cry1A subfamily of insecticidal proteins of Bacillus thuringiensis. Ligand blot analysis with heterologously expressed and purified H. armigera Bt receptor with three closely related Cry1A proteins tentatively identified HaAPN1 as an interacting ligand. However, to date there is no direct evidence of APN being a functional receptor to Cry1Ac in H. armigera. Sf21 insect cells expressing HaAPN1 displayed aberrant cell morphology upon overlaying with Cry1Ac protein. Down-regulating expression of HaAPN1 by RNA interference using double-stranded RNA correlated with a corresponding reduction in the sensitivity of HaAPN1-expressing cells to Cry1Ac protein. This clearly establishes that insect cells expressing the receptor recruit sensitivity to the insecticidal protein Cry1Ac, and their susceptibility is directly dependent on the amount of HaAPN1 protein expressed. Most importantly, silencing of HaAPN1 in H. armigera in vivo by RNA interference resulted in reduced transcript levels and a corresponding decrease in the susceptibility of larvae to Cry1Ac. BIAcore analysis of HaAPN1/Cry1Ac interaction further established HaAPN1 as a ligand for Cry1Ac. This is the first functional demonstration of insect aminopeptidase-N of H. armigera being a receptor of Cry1Ac protein of B. thuringiensis

    Role of human GRP75 in miRNA mediated regulation of dengue virus replication

    Get PDF
    In recent times, RNAi has emerged as an important defence system that regulates replication of pathogens in host cells. Many RNAi related host factors especially the host miRNAs play important roles in all intrinsic cellular functions, including viral infection. We have been working on identification of mammalian host factors involved in Dengue virus infection. In the present study, we identified Glucose Regulated Protein 75kDa (GRP75), as a host factor that is associated with dicer complex, in particular with HADHA (trifunctional enzyme subunit alpha, mitochondrial), an auxiliary component of dicer complex. Knockdown of GRP75 by respective siRNAs in Huh-7 cells resulted in the accumulation of dengue viral genomic RNA suggesting a role of GRP75 in regulating dengue virus replication in human cell lines. To elucidate the mode of action of GRP75, we over expressed the protein in Huh-7 cells and analysed the host miRNAs processing. The results revealed that, GRP75 is involved in processing of host miRNA, hsa-mir-126, that down regulates dengue virus replication. These findings suggest a regulatory role of human miRNA pathway especially GRP75 protein and hsa-mir-126 in dengue virus replication. These results thus provide insights into the role of miRNAs and RNAi machinery in dengue life cycle

    Transcriptional analysis of an immune-responsive serine protease from Indian malarial vector, Anopheles culicifacies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main vector for transmission of malaria in India is the <it>Anopheles culicifacies </it>mosquito species, a naturally selected subgroup of which is completely refractory (R) to transmission of the malaria parasite, <it>Plasmodium vivax</it>;</p> <p>Results</p> <p>Here, we report the molecular characterization of a serine protease (<it>acsp30</it>)-encoding gene from <it>A. culicifacies</it>, which was expressed in high abundance in the refractory strain compared to the susceptible (S) strain. The transcriptional upregulation of <it>acsp30 </it>upon <it>Plasmodium </it>challenge in the refractory strain coincided with ookinete invasion of mosquito midgut. Gene organization and primary sequence of <it>acsp30 </it>were identical in the R and S strains suggesting a divergent regulatory status of <it>acsp30 </it>in these strains. To examine this further, the upstream regulatory sequences of <it>acsp30 </it>were isolated, cloned and evaluated for the presence of promoter activity. The 702 bp upstream region of <it>acsp30 </it>from the two strains revealed sequence divergence. The promoter activity measured by luciferase-based reporter assay was shown to be 1.5-fold higher in the R strain than in the S. Gel shift experiments demonstrated a differential recruitment of nuclear proteins to upstream sequences of <it>acsp30 </it>as well as a difference in the composition of nuclear proteins in the two strains, both of which might contribute to the relative abundance of <it>acsp30 </it>in the R strain;</p> <p>Conclusion</p> <p>The specific upregulation of <it>acsp30 </it>in the R strain only in response to <it>Plasmodium </it>infection is suggestive of its role in contributing the refractory phenotype to the <it>A. culicifacies </it>mosquito population.</p

    Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor

    Get PDF
    RNA interference (RNAi) is an important antiviral defense response in plants and invertebrates; however, evidences for its contribution to mammalian antiviral defense are few. In the present study, we demonstrate the anti-dengue virus role of RNAi in mammalian cells. Dengue virus infection of Huh 7 cells decreased the mRNA levels of host RNAi factors, namely, Dicer, Drosha, Ago1, and Ago2, and in corollary, silencing of these genes in virus-infected cells enhanced dengue virus replication. In addition, we observed downregulation of many known human microRNAs (miRNAs) in response to viral infection. Using reversion-of-silencing assays, we further showed that NS4B of all four dengue virus serotypes is a potent RNAi suppressor. We generated a series of deletion mutants and demonstrated that NS4B mediates RNAi suppression via its middle and C-terminal domains, namely, transmembrane domain 3 (TMD3) and TMD5. Importantly, the NS4B N-terminal region, including the signal sequence 2K, which has been implicated in interferon (IFN)-antagonistic properties, was not involved in mediating RNAi suppressor activity. Site-directed mutagenesis of conserved residues revealed that a Phe-to-Ala (F112A) mutation in the TMD3 region resulted in a significant reduction of the RNAi suppression activity. The green fluorescent protein (GFP)-small interfering RNA (siRNA) biogenesis of the GFP-silenced line was considerably reduced by wild-type NS4B, while the F112A mutant abrogated this reduction. These results were further confirmed by in vitro dicer assays. Together, our results suggest the involvement of miRNA/RNAi pathways in dengue virus establishment and that dengue virus NS4B protein plays an important role in the modulation of the host RNAi/miRNA pathway to favor dengue virus replication

    Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    Get PDF
    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.Comment: 139 pages, Physics White Paper of the ICAL (INO) Collaboration, Contents identical with the version published in Pramana - J. Physic

    Teamwork delivers biotechnology products to Indian small-holder crop-livestock producers: Pearl millet hybrid “HHB 67 Improved” enters seed delivery pipeline

    Get PDF
    HHB 67, released in 1990 by CCS Haryana Agricultural University, is one such single-cross pearl millet hybrid. HHB 67 is highly popular because of its extra-early maturity (it needs less than 65 days from sowing to grain maturity) and is now grown on over 500 000 ha in Haryana and Rajasthan, India. Recent surveys have indicated that this hybrid is starting to succumb to downy mildew (DM; caused by the pseudo-fungus Sclerospora graminicola), showing up to 30% incidence in farmers' fields. By rapidly adopting hybrid "HHB 67 Improved", farmers in Haryana and Rajasthan can avoid grain production losses of Rs36 crores (US$8 million) which would be expected in the first year of a major DM outbreak on the original HHB 67
    corecore