386 research outputs found

    Strong-driving-assisted multipartite entanglement in cavity QED

    Get PDF
    We propose a method of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in a cavity of high quality factor with a strong classical driving field. It is shown that, with a judicious choice of the cavity detuning and the applied coherent field detuning, vacuum Rabi coupling produces a large number of important multipartite entangled states. It is even possible to produce entangled states involving different cavity modes. Tuning of parameters also permits us to switch from Jaynes-Cummings to anti-Jaynes-Cummings like interaction.Comment: Last version with minor changes and added references. Accepted for publication in Phys. Rev. Letter

    Spectroscopy of Rydberg atoms in non-neutral cold plasmas

    Full text link
    The electric field in mm-sized one-component non-neutral plasmas is measured using the Stark effect of Rydberg atoms embedded in them. The plasmas are clouds of cold Rb+Rb+-ions, which are produced by UV photoionization of laser-cooled Rb atoms in a magneto-optic trap. The dependence of the electric field on the number of ions and the Coulomb explosion of the ion clouds have been studied. © 2002 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87634/2/89_1.pd

    Wave Packet Echoes in the Motion of Trapped Atoms

    Get PDF
    We experimentally demonstrate and systematically study the stimulated revival (echo) of motional wave packet oscillations. For this purpose, we prepare wave packets in an optical lattice by non-adiabatically shifting the potential and stimulate their reoccurence by a second shift after a variable time delay. This technique, analogous to spin echoes, enables one even in the presence of strong dephasing to determine the coherence time of the wave packets. We find that for strongly bound atoms it is comparable to the cooling time and much longer than the inverse of the photon scattering rate

    Tunnelling and the Born-Oppenheimer approximation in optical lattices

    Full text link
    We study periodic well-to-well flopping of rubidium atoms in one-dimensional grey optical lattices using a nondestructive, real-time measurement technique and quantum Monte Carlo wavefunction simulations. The observed flopping rates as well as flopping rates extracted from exact band structure calculations can largely be reproduced using adiabatic models that employ the Born-Oppenheimer approximation. The adiabatic model is greatly improved by taking into account a gauge potential that is added to the usual adiabatic light-shift potential. The validity of the adiabatic model allows us to interpret the observed flopping phenomenon as periodic well-to-well tunnelling. At low intensities and in related far-off-resonant optical lattices the adiabatic model fails. There, a weak-coupling model becomes valid, which describes the well-to-well flopping as a Rabi oscillation between weakly coupled states, but not as a tunnel effect.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48856/2/ob0513.pd

    The Hydrogen Atom in Combined Electric and Magnetic Fields with Arbitrary Mutual Orientations

    Get PDF
    For the hydrogen atom in combined magnetic and electric fields we investigate the dependence of the quantum spectra, classical dynamics, and statistical distributions of energy levels on the mutual orientation of the two external fields. Resonance energies and oscillator strengths are obtained by exact diagonalization of the Hamiltonian in a complete basis set, even far above the ionization threshold. At high excitation energies around the Stark saddle point the eigenenergies exhibit strong level repulsions when the angle between the fields is varied. The large avoided crossings occur between states with the same approximately conserved principal quantum number, n, and this intramanifold mixing of states cannot be explained, not even qualitatively, by conventional perturbation theory. However, it is well reproduced by an extended perturbation theory which takes into account all couplings between the angular momentum and Runge-Lenz vector. The large avoided crossings are interpreted as a quantum manifestation of classical intramanifold chaos. This interpretation is supported by both classical Poincar\'e surfaces of section, which reveal a mixed regular-chaotic intramanifold dynamics, and the statistical analysis of nearest-neighbor-spacingComment: two-column version, 10 pages, REVTeX, 10 figures, uuencoded, submitted to Rhys. Rev.
    corecore