56 research outputs found

    A simple beam model for the shear failure of interfaces

    Get PDF
    We propose a novel model for the shear failure of a glued interface between two solid blocks. We model the interface as an array of elastic beams which experience stretching and bending under shear load and break if the two deformation modes exceed randomly distributed breaking thresholds. The two breaking modes can be independent or combined in the form of a von Mises type breaking criterion. Assuming global load sharing following the beam breaking, we obtain analytically the macroscopic constitutive behavior of the system and describe the microscopic process of the progressive failure of the interface. We work out an efficient simulation technique which allows for the study of large systems. The limiting case of very localized interaction of surface elements is explored by computer simulations.Comment: 11 pages, 13 figure

    Local load sharing fiber bundles with a lower cutoff of strength disorder

    Full text link
    We study the failure properties of fiber bundles with a finite lower cutoff of the strength disorder varying the range of interaction between the limiting cases of completely global and completely local load sharing. Computer simulations revealed that at any range of load redistribution there exists a critical cutoff strength where the macroscopic response of the bundle becomes perfectly brittle, i.e. linearly elastic behavior is obtained up to global failure, which occurs catastrophically after the breaking of a small number of fibers. As an extension of recent mean field studies [Phys. Rev. Lett. 95, 125501 (2005)], we demonstrate that approaching the critical cutoff, the size distribution of bursts of breaking fibers shows a crossover to a universal power law form with an exponent 3/2 independent of the range of interaction.Comment: 4 pages, 4 figure
    • …
    corecore