266 research outputs found

    Rates of asymptotic entanglement transformations for bipartite mixed states: Maximally entangled states are not special

    Full text link
    We investigate the asymptotic rates of entanglement transformations for bipartite mixed states by local operations and classical communication (LOCC). We analyse the relations between the rates for different transitions and obtain simple lower and upper bound for these transitions. In a transition from one mixed state to another and back, the amount of irreversibility can be different for different target states. Thus in a natural way, we get the concept of "amount" of irreversibility in asymptotic manipulations of entanglement. We investigate the behaviour of these transformation rates for different target states. We show that with respect to asymptotic transition rates under LOCC, the maximally entangled states do not have a special status. In the process, we obtain that the entanglement of formation is additive for all maximally correlated states. This allows us to show irreversibility in asymptotic entanglement manipulations for maximally correlated states in 2x2. We show that the possible nonequality of distillable entanglement under LOCC and that under operations preserving the positivity of partial transposition, is related to the behaviour of the transitions (under LOCC) to separable target states.Comment: 9 pages, 3 eps figures, REVTeX4; v2: presentation improved, new considerations added, title changed; v3: minor changes, published versio

    Mixedness and teleportation

    Get PDF
    We show that on exceeding a certain degree of mixedness (as quantified by the von Neumann entropy), entangled states become useless for teleporatation. By increasing the dimension of the entangled systems, this entropy threshold can be made arbitrarily close to maximal. This entropy is found to exceed the entropy threshold sufficient to ensure the failure of dense coding.Comment: 6 pages, no figure

    Properties of Generalized Univariate Hypergeometric Functions

    Get PDF
    Based on Spiridonov’s analysis of elliptic generalizations of the Gauss hypergeometric function, we develop a common framework for 7-parameter families of generalized elliptic, hyperbolic and trigonometric univariate hypergeometric functions. In each case we derive the symmetries of the generalized hypergeometric function under the Weyl group of type E_7 (elliptic, hyperbolic) and of type E_6 (trigonometric) using the appropriate versions of the Nassrallah-Rahman beta integral, and we derive contiguous relations using fundamental addition formulas for theta and sine functions. The top level degenerations of the hyperbolic and trigonometric hypergeometric functions are identified with Ruijsenaars’ relativistic hypergeometric function and the Askey-Wilson function, respectively. We show that the degeneration process yields various new and known identities for hyperbolic and trigonometric special functions. We also describe an intimate connection between the hyperbolic and trigonometric theory, which yields an expression of the hyperbolic hypergeometric function as an explicit bilinear sum in trigonometric hypergeometric functions

    Entanglement Measures under Symmetry

    Full text link
    We show how to simplify the computation of the entanglement of formation and the relative entropy of entanglement for states, which are invariant under a group of local symmetries. For several examples of groups we characterize the state spaces, which are invariant under these groups. For specific examples we calculate the entanglement measures. In particular, we derive an explicit formula for the entanglement of formation for UU-invariant states, and we find a counterexample to the additivity conjecture for the relative entropy of entanglement.Comment: RevTeX,16 pages,9 figures, reference added, proof of monotonicity corrected, results unchange

    An E7 Surprise

    Full text link
    We explore some curious implications of Seiberg duality for an SU(2) four-dimensional gauge theory with eight chiral doublets. We argue that two copies of the theory can be deformed by an exactly marginal quartic superpotential so that they acquire an enhanced E7 flavor symmetry. We argue that a single copy of the theory can be used to define an E7-invariant superconformal boundary condition for a theory of 28 five-dimensional free hypermultiplets. Finally, we derive similar statements for three-dimensional gauge theories such as an SU(2) gauge theory with six chiral doublets or Nf=4 SQED.Comment: 27 page

    Entanglement Evolution in the Presence of Decoherence

    Get PDF
    The entanglement of two qubits, each defined as an effective two-level, spin 1/2 system, is investigated for the case that the qubits interact via a Heisenberg XY interaction and are subject to decoherence due to population relaxation and thermal effects. For zero temperature, the time dependent concurrence is studied analytically and numerically for some typical initial states, including a separable (unentangled) initial state. An analytical formula for non-zero steady state concurrence is found for any initial state, and optimal parameter values for maximizing steady state concurrence are given. The steady state concurrence is found analytically to remain non-zero for low, finite temperatures. We also identify the contributions of global and local coherence to the steady state entanglement.Comment: 12 pages, 4 figures. The second version of this paper has been significantly expanded in response to referee comments. The revised manuscript has been accepted for publication in Journal of Physics

    "Squashed Entanglement" - An Additive Entanglement Measure

    Full text link
    In this paper, we present a new entanglement monotone for bipartite quantum states. Its definition is inspired by the so-called intrinsic information of classical cryptography and is given by the halved minimum quantum conditional mutual information over all tripartite state extensions. We derive certain properties of the new measure which we call "squashed entanglement": it is a lower bound on entanglement of formation and an upper bound on distillable entanglement. Furthermore, it is convex, additive on tensor products, and superadditive in general. Continuity in the state is the only property of our entanglement measure which we cannot provide a proof for. We present some evidence, however, that our quantity has this property, the strongest indication being a conjectured Fannes type inequality for the conditional von Neumann entropy. This inequality is proved in the classical case.Comment: 8 pages, revtex4. v2 has some more references and a bit more discussion, v3 continuity discussion extended, typos correcte

    Rates of convergence for empirical spectral measures: a soft approach

    Full text link
    Understanding the limiting behavior of eigenvalues of random matrices is the central problem of random matrix theory. Classical limit results are known for many models, and there has been significant recent progress in obtaining more quantitative, non-asymptotic results. In this paper, we describe a systematic approach to bounding rates of convergence and proving tail inequalities for the empirical spectral measures of a wide variety of random matrix ensembles. We illustrate the approach by proving asymptotically almost sure rates of convergence of the empirical spectral measure in the following ensembles: Wigner matrices, Wishart matrices, Haar-distributed matrices from the compact classical groups, powers of Haar matrices, randomized sums and random compressions of Hermitian matrices, a random matrix model for the Hamiltonians of quantum spin glasses, and finally the complex Ginibre ensemble. Many of the results appeared previously and are being collected and described here as illustrations of the general method; however, some details (particularly in the Wigner and Wishart cases) are new. Our approach makes use of techniques from probability in Banach spaces, in particular concentration of measure and bounds for suprema of stochastic processes, in combination with more classical tools from matrix analysis, approximation theory, and Fourier analysis. It is highly flexible, as evidenced by the broad list of examples. It is moreover based largely on "soft" methods, and involves little hard analysis

    Finite quantum tomography via semidefinite programming

    Full text link
    Using the the convex semidefinite programming method and superoperator formalism we obtain the finite quantum tomography of some mixed quantum states such as: qudit tomography, N-qubit tomography, phase tomography and coherent spin state tomography, where that obtained results are in agreement with those of References \cite{schack,Pegg,Barnett,Buzek,Weigert}.Comment: 25 page

    A reversible theory of entanglement and its relation to the second law

    Get PDF
    We consider the manipulation of multipartite entangled states in the limit of many copies under quantum operations that asymptotically cannot generate entanglement. As announced in [Brandao and Plenio, Nature Physics 4, 8 (2008)], and in stark contrast to the manipulation of entanglement under local operations and classical communication, the entanglement shared by two or more parties can be reversibly interconverted in this setting. The unique entanglement measure is identified as the regularized relative entropy of entanglement, which is shown to be equal to a regularized and smoothed version of the logarithmic robustness of entanglement. Here we give a rigorous proof of this result, which is fundamentally based on a certain recent extension of quantum Stein's Lemma proved in [Brandao and Plenio, Commun. Math. 295, 791 (2010)], giving the best measurement strategy for discriminating several copies of an entangled state from an arbitrary sequence of non-entangled states, with an optimal distinguishability rate equal to the regularized relative entropy of entanglement. We moreover analyse the connection of our approach to axiomatic formulations of the second law of thermodynamics.Comment: 21 pages. revised versio
    • …
    corecore