3 research outputs found

    Approximating Soil Organic Carbon Stock in the Eastern Plains of Colombia

    Get PDF
    In Colombia, the rise of agricultural and pastureland expansion continues to exert increasing pressure on the structure and ecological processes of savannahs in the Eastern Plains. However, the effect of land use change on soil properties is often unknown due to poor access to remote areas. Effective management and conservation of soils requires the development spatial approaches that measure and predict dynamic soil properties such as soil organic carbon (SOC). This study estimates the SOC stock in the Eastern Plains of Colombia, with validation and uncertainty analyses, using legacy data of 653 soil samples. A random forest model of nine environmental covariate layers was used to develop predictions of SOC content. Model validation was determined using the Taylor series method, and root-mean-squared error (RMSE) and mean error (ME) were calculated to assess model performance. We found that the model explained 50.28% of the variation within digital SOC content map. Raster layers of SOC content, bulk density, and coarse rock fragment within the Eastern Plains were used to calculate SOC stock within the region. With uncertainty, SOC stock in the topsoil of the Eastern Plains was 1.2 G t ha−1. We found that SOC content contributed nearly all the uncertainty in the SOC stock predictions, although better determinations of SOC stock can be obtained with the use of a more geomorphological diverse dataset. The digital soil maps developed in this study provide predictions of extant SOC content and stock in the topsoil of the Eastern Plains, important soil information that may provide insight into the development of research, regulatory, and legislative initiatives to conserve and manage this evolving ecosystem

    Seasonal climate signals preserved in biochemical varves: insights from novel high-resolution sediment scanning techniques

    Get PDF
    Varved lake sediments are exceptional archives of paleoclimatic information due to their precise chronological control and annual resolution. However, quantitative paleoclimate reconstructions based on the biogeochemical composition of biochemical varves are extremely rare, mainly because the climate–proxy relationships are complex and obtaining biogeochemical proxy data at very high (annual) resolution is difficult. Recent developments in high-resolution hyperspectral imaging (HSI) of sedimentary pigment biomarkers combined with micro X-ray fluorescence (µXRF) elemental mapping make it possible to measure the structure and composition of varves at unprecedented resolution. This provides opportunities to explore seasonal climate signals preserved in biochemical varves and, thus, assess the potential for annual-resolution climate reconstruction from biochemical varves. Here, we present a geochemical dataset including HSI-inferred sedimentary pigments and µXRF-inferred elements at very high spatial resolution (60 µm, i.e. > 100 data points per varve year) in varved sediments of Lake Żabińskie, Poland, over the period 1966–2019 CE. We compare these data with local meteorological observations to explore and quantify how changing seasonal meteorological conditions influenced sediment composition and varve formation processes. Based on the dissimilarity of within-varve multivariate geochemical time series, we classified varves into four types. Multivariate analysis of variance shows that these four varve types were formed in years with significantly different seasonal meteorological conditions. Generalized additive models (GAMs) were used to infer seasonal climate conditions based on sedimentary variables. Spring and summer (MAMJJA) temperatures were predicted using Ti and total C (R2adj=0.55; cross-validated root mean square error (CV-RMSE) = 0.7 ∘C, 14.4 %). Windy days from March to December (mean daily wind speed > 7 m s−1) were predicted using mass accumulation rate (MAR) and Si (R2adj=0.48; CV-RMSE = 19.0 %). This study demonstrates that high-resolution scanning techniques are promising tools to improve our understanding of varve formation processes and climate–proxy relationships in biochemical varves. This knowledge is the basis for quantitative high-resolution paleoclimate reconstructions, and here we provide examples of calibration and validation of annual-resolution seasonal weather inference from varve biogeochemical data

    Predicted soil organic carbon (SOC) content (g/kg) and SOC stock (t/ha) in the Eastern Plains of Colombia

    No full text
    SOC content (g/kg) and SOC stock (t/ha) at 0-30 cm soil depth maps were developed for the Eastern plains of Colombia at a spatial resolution of 90 m. These maps are part of the results compiled in the paper: “Approximating Soil Organic Carbon Stock in the Eastern Plains of Colombia” and represent the spatial variation of both SOC content and stock at 0-30 cm soil depth. For more details, see Shauna et al, (2021): (doi.org/10.3389/fenvs.2021.685819)
    corecore