1,312 research outputs found
End-user Empowerment in the Digital Age
End-user empowerment (or human empowerment) may be seen as an important aspect of a human-centric approach towards the digital economy. Despite the role of end-users has been recognized as a key element in information systems and end-user computing, empowering end-users may be seen as a next evolutionary step. This minitrack aims at advancing the understanding of what end-user empowerment really is, what the main challenges to develop end-user empowering systems are, and how end-user empowerment may be achieved in specific domains
Measuring Ecosystem Complexity - Decision-Making Based on Complementarity Graphs
Platforms feature increasingly complex architectures with regard to interconnecting with other digital platforms as well as with a variety of devices and services. This development also impacts the structure of digital platform ecosystems and forces providers of these services, devices, and services to incorporate this complexity in their decision-making. To contribute to the existing body of knowledge on measuring ecosystem complexity, the present research proposes two key artefacts based on ecosystem intelligence: On the one hand, complementarity graphs represent ecosystems with an ecosystem\u27s functional modules as vertices and complementarities as edges. The nodes carry information about the category membership of the module. On the other hand, a process is suggested that can collect important information for ecosystem intelligence using proxies and web scraping. Our approach allows replacing data, which today is largely unavailable due to competitive reasons. We demonstrated the use of the artefacts in category-oriented complementarity maps that aggregate the information from complementarity graphs and support decision-making. They show which combination of module categories creates strong and weak complementarities. The paper evaluates complementarity maps and the data collection process by creating category-oriented complementarity graphs on the Alexa skill ecosystem and concludes with a call to pursue more research based on functional ecosystem intelligence
Introduction to the Minitrack on Artificial Intelligence-based Assistants
Artificial Intelligence (AI) has received much attention due to the recent progress in several technological areas such as image detection, translation, and decision support. Established businesses and many start-up businesses are eagerly discussing how they can gain a competitive advantage from complementing their products, services and processes with AI. In fact, based on the research in the AI domain since several decades, a broad variety of promising application fields were suggested where AI might add business value. Meanwhile, applications are not limited to simple structured problems, but even applications higher complexities are feasible, which require higher levels of “intelligence”. To avoid discussions on the ambivalent notion of “intelligence”, it shall refer to tasks involving perception, processing, action and learning. Many applications are possible along these activities, in particular a user’s interaction via natural language
Ecosystem Intelligence for AI-based Assistant Platforms
Digital assistants like Alexa, Google Assistant, or Siri have seen a large adoption over the past years. Using artificial intelligence (AI) technologies, they provide a vocal interface to physical devices as well as to digital services and have spurred an entire new eco-system. This comprises the big tech companies themselves, but also a strongly growing community of developers that make these functionalities available via digital platforms. At present, only few research is available to understand the structure and the value creation logic of these AI-based assistant platforms and their ecosystem. This research adopts ecosystem intelligence to shed light on their structure and dynamics. It combines existing data collection methods with an automated approach that proves useful in deriving a network-based conceptual model of Amazon's Alexa assistant platform and ecosystem. It shows that skills are a key unit of modularity in this ecosystem, which is linked to other elements such as service, data, and money flows. It also suggests that the topology of the Alexa ecosystem may be described using the criteria reflexivity, symmetry, variance, strength, and centrality of the skill coactivations. Finally, it identifies three ways to create and capture value on AI-based assistant platforms. Surprisingly only a few skills use a transactional business model by selling services and goods but many skills are complementary and provide information, configuration, and control services for other skill provider products and services. These findings provide new insights into the highly relevant ecosystems of AI-based assistant platforms, which might serve enterprises in developing their strategies in these ecosystems. They might also pave the way to a faster, data-driven approach for ecosystem intelligence
A Conceptual Model for Assistant Platforms
Assistant platforms are becoming a key element for the business model of many companies. They have evolved from assistance systems that provide support when using information (or other) systems to platforms in their own. Alexa, Cortana or Siri may be used with literally thousands of services. From this background, this paper develops the notion of assistant platforms and elaborates a conceptual model that supports businesses in developing appropriate strategies. The model consists of three main building blocks, an architecture that depicts the components as well as the possible layers of an assistant platform, the mechanism that determines the value creation on assistant platforms, and the ecosystem with its network effects, which emerge from the multi-sided nature of assistant platforms. The model has been derived from a litera-ture review and is illustrated with examples of existing assistant platforms. Its main purpose is to advance the understanding of assistant platforms and to trigger future research
Measuring Ecosystem Complexity - Decision-Making Based on Complementarity Graphs
Platforms feature increasingly complex architectures with regard to interconnecting with other digital platforms as well as with a variety of devices and services. This development also impacts the structure of digital platform ecosystems and forces providers of these services, devices, and services to incorporate this complexity in their decision-making. To contribute to the existing body of knowledge on measuring ecosystem complexity, the present research proposes two key artefacts based on ecosystem intelligence: On the one hand, complementarity graphs represent ecosystems with an ecosystem's functional modules as vertices and complementarities as edges. The nodes carry information about the category membership of the module. On the other hand, a process is suggested that can collect important information for ecosystem intelligence using proxies and web scraping. Our approach allows replacing data, which today is largely unavailable due to competitive reasons. We demonstrated the use of the artefacts in category-oriented complementarity maps that aggregate the information from complementarity graphs and support decision-making. They show which combination of module categories creates strong and weak complementarities. The paper evaluates complementarity maps and the data collection process by creating category-oriented complementarity graphs on the Alexa skill ecosystem and concludes with a call to pursue more research based on functional ecosystem intelligence
- …