23 research outputs found

    Do the Manual or Computer-Controlled Flowmeters Generate Similar Isoflurane Concentrations in Tafonius?

    Get PDF
    Introduction: Tafonius is an anesthesia machine with computer-controlled monitor and ventilator. We compared the isoflurane fluctuations in the circuit with manual (MF) or computer-driven (CF) flowmeters, investigated the origin of the differences and assessed whether isoflurane concentration time course followed a one-compartment model.Material and Methods: A calibrated TEC-3 isoflurane vaporizer was used. Gas composition and flows were measured using a multiparametric monitor and a digital flowmeter. Measurements included: (1) Effects of various FiO2 with MF/CF on the isoflurane fraction changes in the breathing system during mechanical ventilation of a lung model; wash-in kinetic was fitted to a compartmental model; (2) Gas outflow at the common gas outlet (CGO) with MF/CF at different FiO2; (3) Isoflurane output of the vaporizer at various dial settings with MF/CF set at different flows without and with reduction of the CGO diameter.Results: (1) The 3% targeted isoflurane concentration was not reached; additional time was required to reach specific concentrations with CF (lowest FiO2, longer time). The exponential course fitted a two-compartment model; (2) Set and measured flows were identical with MF. With CF at 0.21 FiO2, flow was intermittently 7.6 L min−1 or zero (mean total: 38% of the set flow); with CF at 1.00 FiO2, flow was 10.6 L min−1 or zero (mean: 4–5.3 L min−1); with 0.21 < FiO2 < 1.00, combined flow was intermittent (maximum output: 15.6 L min−1); (3) With MF, isoflurane output was matching dial setting at 5 L min−1 but was lower at higher flows; with CF generating intermittent flows, isoflurane output was fluctuating. With the 4 mm diameter CGO, isoflurane concentration was close to dial setting with both MF and CF. With a 14 G CGO, isoflurane concentration was lower than dial setting with MF, higher with CF.Conclusions and Clinical Relevance: Using MF or CF led to different isoflurane fraction time course in Tafonius. Flows were lower than set with CF; the TEC-3 did not compensate for high/intermittent flows and pressures; the CGO diameter influenced isoflurane output

    A Survey on the Use of Spirometry in Small Animal Anaesthesia and Critical Care

    Get PDF
    The objective was to document the use of spirometry and ventilation settings in small animal anaesthesia and intensive care through a descriptive, open, online, anonymous survey. The survey was advertised on social media and via email. Participation was voluntary. The google forms platform was used. It consisted of eight sections in English: demographic information, use of spirometry in spontaneously ventilating/mechanically ventilated dogs, need for spirometry, equipment available and calibration status, ventilation modes, spirometry displays, compliance (CRS) and resistance (RRS) of the respiratory system. Simple descriptive analyses were applied. There were 128 respondents. Respondents used spirometry more in ventilated dogs than during spontaneous breathing. Over 3/4 of the respondents considered spirometry essential in “selected” (43%) or “most” cases (33%). Multiple devices and technologies were used. The majority of the respondents were not directly involved in or informed about the calibration of their equipment. Of all displays, pressure-volume loops were the most common. Values of CRS and RRS were specifically monitored in more than 50% of cases by 44% of the respondents only. A variety of ventilation modes was used. Intensivists tend to use smaller VT than anaesthetists. More information on reference intervals of CRS and RRS and technical background on spirometers is required

    Propofol-diazepam or propofol-midazolam co-induction in healthy dogs: effects on propofol dosages, cardiovascular and respiratory events

    Get PDF
    PICO question In healthy dogs, does the use of diazepam or midazolam administered in co-induction with propofol result in a reduction in the dose of propofol required to induce anaesthesia and a decrease in adverse cardiovascular and respiratory events?   Clinical bottom line Category of research question Treatment The number and type of study designs reviewed Eight papers were critically reviewed. A total of six manuscripts were prospective, randomised, blinded, clinical studies. One trial was prospective, randomised, blinded, clinical with a Latin square, incomplete design. One study was retrospective, randomised, blinded, crossover, experimental Strength of evidence Moderate Outcomes reported Variables assessed in this Knowledge Summary included: propofol dose required to induce anaesthesia (considering successful orotracheal intubation as an end point), changes in cardiovascular variables (heart rate, systolic, mean and diastolic blood pressure) and changes in respiratory variables (development of apnoea, changes in respiratory rates) Conclusion In healthy dogs, using propofol-diazepam or propofol-midazolam co-induction resulted in a reduction in propofol dose required to induce anaesthesia in some trials only. Midazolam appeared more effective than diazepam in this context. The dosages, timing and sequence of drug administration seemed relevant. No evidence suggested that using propofol-diazepam or propofol-midazolam co-induction resulted in a reduction of adverse cardiovascular or respiratory events. In addition, although this was out of the scope of the PICO question addressed here, adverse events (e.g. excitement, poorer quality of induction) were reported in several studies when diazepam or midazolam were used in co-induction   How to apply this evidence in practice The application of evidence into practice should take into account multiple factors, not limited to: individual clinical expertise, patient’s circumstances and owners’ values, country, location or clinic where you work, the individual case in front of you, the availability of therapies and resources. Knowledge Summaries are a resource to help reinforce or inform decision making. They do not override the responsibility or judgement of the practitioner to do what is best for the animal in their care

    Enantiospecific pharmacokinetics of intravenous dexmedetomidine in beagles.

    Get PDF
    The goal of this study was to investigate the pharmacokinetic (PK) behaviour of dexmedetomidine in dogs administered as a pure enantiomer versus as part of a racemic mixture. Eight unmedicated intact purpose-bread beagles were included. Two intravenous treatments of either medetomidine or dexmedetomidine were administered at 10- to 14-day intervals. Atipamezole or saline solution was administered intramuscularly 45 min later. Venous blood samples were collected into EDTA collection tubes, and the quantification of dexmedetomidine and levomedetomidine was performed by chiral LC-MS/MS. All dogs appeared sedated after each treatment without complication. Plasma concentrations of levomedetomidine were measured only in the racemic group and were 51.4% (51.4%-56.1%) lower than dexmedetomidine. Non-compartmental analysis (NCA) was performed for both drugs, while dexmedetomidine data were further described using a population pharmacokinetic approach. A standard two-compartment mammillary model with linear elimination with combined additive and multiplicative error model for residual unexplained variability was established for dexmedetomidine. An exponential model was finally retained to describe inter-individual variability on parameters of clearance (Cl1 ) and central and peripheral volumes of distribution (V1 , V2 ). No effect of occurrence, levomedetomidine or atipamezole could be observed on dexmedetomidine PK parameters. Dexmedetomidine did not undergo significantly different PK when administered alone or as part of the racemic mixture in otherwise unmedicated dogs

    A Survey on the Use of Spirometry in Small Animal Anaesthesia and Critical Care

    No full text
    The objective was to document the use of spirometry and ventilation settings in small animal anaesthesia and intensive care through a descriptive, open, online, anonymous survey. The survey was advertised on social media and via email. Participation was voluntary. The google forms platform was used. It consisted of eight sections in English: demographic information, use of spirometry in spontaneously ventilating/mechanically ventilated dogs, need for spirometry, equipment available and calibration status, ventilation modes, spirometry displays, compliance (CRS) and resistance (RRS) of the respiratory system. Simple descriptive analyses were applied. There were 128 respondents. Respondents used spirometry more in ventilated dogs than during spontaneous breathing. Over 3/4 of the respondents considered spirometry essential in “selected” (43%) or “most” cases (33%). Multiple devices and technologies were used. The majority of the respondents were not directly involved in or informed about the calibration of their equipment. Of all displays, pressure-volume loops were the most common. Values of CRS and RRS were specifically monitored in more than 50% of cases by 44% of the respondents only. A variety of ventilation modes was used. Intensivists tend to use smaller VT than anaesthetists. More information on reference intervals of CRS and RRS and technical background on spirometers is require

    Do the Manual or Computer-Controlled Flowmeters Generate Similar Isoflurane Concentrations in Tafonius?

    Get PDF
    Introduction: Tafonius is an anesthesia machine with computer-controlled monitor and ventilator. We compared the isoflurane fluctuations in the circuit with manual (MF) or computer-driven (CF) flowmeters, investigated the origin of the differences and assessed whether isoflurane concentration time course followed a one-compartment model. Material and Methods: A calibrated TEC-3 isoflurane vaporizer was used. Gas composition and flows were measured using a multiparametric monitor and a digital flowmeter. Measurements included: (1) Effects of various FiO2 with MF/CF on the isoflurane fraction changes in the breathing system during mechanical ventilation of a lung model; wash-in kinetic was fitted to a compartmental model; (2) Gas outflow at the common gas outlet (CGO) with MF/CF at different FiO2; (3) Isoflurane output of the vaporizer at various dial settings with MF/CF set at different flows without and with reduction of the CGO diameter. Results: (1) The 3% targeted isoflurane concentration was not reached; additional time was required to reach specific concentrations with CF (lowest FiO2, longer time). The exponential course fitted a two-compartment model; (2) Set and measured flows were identical with MF. With CF at 0.21 FiO2, flow was intermittently 7.6 L min−1 or zero (mean total: 38% of the set flow); with CF at 1.00 FiO2, flow was 10.6 L min−1 or zero (mean: 4–5.3 L min−1); with 0.21 < FiO2 < 1.00, combined flow was intermittent (maximum output: 15.6 L min−1); (3) With MF, isoflurane output was matching dial setting at 5 L min−1 but was lower at higher flows; with CF generating intermittent flows, isoflurane output was fluctuating. With the 4 mm diameter CGO, isoflurane concentration was close to dial setting with both MF and CF. With a 14 G CGO, isoflurane concentration was lower than dial setting with MF, higher with CF. Conclusions and Clinical Relevance: Using MF or CF led to different isoflurane fraction time course in Tafonius. Flows were lower than set with CF; the TEC-3 did not compensate for high/intermittent flows and pressures; the CGO diameter influenced isoflurane output

    Influence of body weight, age, and sex on cerebrospinal fluid peak flow velocity in dogs without neurological disorders.

    Get PDF
    BACKGROUND Changes in the brain can affect the flow velocity of cerebrospinal fluid (CSF). In humans, the flow velocity of CSF is not only altered by disease but also by age and sex. Such influences are not known in dogs. HYPOTHESIS Peak flow velocity of CSF in dogs is associated with body weight, age, and sex. ANIMALS Peak flow velocity of CSF was measured in 32 client-owned dogs of different breeds, age, and sex. METHODS Peak flow velocity of CSF was determined by phase-contrast magnetic resonance imaging (PC-MRI) at the mesencephalic aqueduct, foramen magnum (FM), and second cervical vertebral body (C2). Dogs were grouped according to body weight, age, and sex. Flow velocity of CSF was compared between groups using linear regression models. RESULTS Dogs with body weight >20 kg had higher CSF peak velocity compared with dogs <10 kg within the ventral and dorsal subarachnoid space (SAS) at the FM (P = .02 and P = .01, respectively), as well as in the ventral and dorsal SAS at C2 (P = .005 and P = .005, respectively). Dogs ≀2 years of age had significantly higher CSF peak flow velocity at the ventral SAS of the FM (P = .05). Females had significantly lower CSF peak flow velocity within the ventral SAS of FM (P = .04). CONCLUSION Body weight, age, and sex influence CSF peak flow velocity in dogs. These factors need to be considered in dogs when CSF flow is quantitatively assessed

    Suspected bilateral phrenic nerve damage following a mediastinal mass removal in a 17 week old pug

    No full text
    The anesthetic management of a pediatric pug for removal of a mediastinal mass is described. During recovery from anesthesia, the dog's respiratory pattern was compatible with bilateral diaphragmatic paralysis. Incidence, complications, possible treatments of phrenic nerve injury, problems of long-term mechanical ventilation, and alternative case management are discussed

    Effect of Medetomidine, Dexmedetomidine, and Their Reversal with Atipamezole on the Nociceptive Withdrawal Reflex in Beagles

    Get PDF
    The objectives were: (1) to compare the antinociceptive activity of dexmedetomidine and medetomidine, and (2) to investigate its modulation by atipamezole. This prospective, randomized, blinded experimental trial was carried out on eight beagles. During the first session, dogs received either medetomidine (MED) (0.02 mg kg-1 intravenously (IV)] or dexmedetomidine (DEX) [0.01 mg kg-1 IV), followed by either atipamezole (ATI) (0.1 mg kg-1) or an equivalent volume of saline (SAL) administered intramuscularly 45 min later. The opposite treatments were administered in a second session 10-14 days later. The nociceptive withdrawal reflex (NWR) threshold was determined using a continuous tracking approach. Sedation was scored (0 to 21) every 10 min. Both drugs (MED and DEX) increased the NWR thresholds significantly up to 5.0 (3.7-5.9) and 4.4 (3.9-4.8) times the baseline (p = 0.547), at seven (3-11) and six (4-9) minutes (p = 0.938), respectively. Sedation scores were not different between MED and DEX during the first 45 min (15 (12-17), p = 0.67). Atipamezole antagonized sedation within 25 (15-25) minutes (p = 0.008) and antinociception within five (3-6) minutes (p = 0.008). Following atipamezole, additional analgesics may be needed to maintain pain relief
    corecore