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1  |  INTRODUC TION

Dexmedetomidine [(R)-(+)-medetomidine] is commonly administered 
to sedate dogs (Murrell & Hellebrekers, 2005; Truchetti et al., 2020) 
and also has analgesic properties (Siegenthaler et al., 2020). It can 

be administered as a single enantiomer, or as a racemic mixture to-
gether with levomedetomidine [(S)-(−)-medetomidine] (“medetomi-
dine”). Clear clinical advantages of using the single enantiomer over 
the racemate are under debate. Although some studies found the 
effects of the two products similar (Gómez-Villamandos et al., 2006; 
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Abstract
The goal of this study was to investigate the pharmacokinetic (PK) behaviour of dex-
medetomidine in dogs administered as a pure enantiomer versus as part of a racemic 
mixture. Eight unmedicated intact purpose-bread beagles were included. Two intra-
venous treatments of either medetomidine or dexmedetomidine were administered 
at 10- to 14-day intervals. Atipamezole or saline solution was administered intramus-
cularly 45 min later. Venous blood samples were collected into EDTA collection tubes, 
and the quantification of dexmedetomidine and levomedetomidine was performed 
by chiral LC–MS/MS. All dogs appeared sedated after each treatment without com-
plication. Plasma concentrations of levomedetomidine were measured only in the 
racemic group and were 51.4% (51.4%–56.1%) lower than dexmedetomidine. Non-
compartmental analysis (NCA) was performed for both drugs, while dexmedetomi-
dine data were further described using a population pharmacokinetic approach. A 
standard two-compartment mammillary model with linear elimination with combined 
additive and multiplicative error model for residual unexplained variability was estab-
lished for dexmedetomidine. An exponential model was finally retained to describe 
inter-individual variability on parameters of clearance (Cl1) and central and peripheral 
volumes of distribution (V1, V2). No effect of occurrence, levomedetomidine or ati-
pamezole could be observed on dexmedetomidine PK parameters. Dexmedetomidine 
did not undergo significantly different PK when administered alone or as part of the 
racemic mixture in otherwise unmedicated dogs.
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Granholm et al., 2007), others documented clinical differences. The 
same dose of dexmedetomidine provided stronger (Raszplewicz 
et al., 2013) or more prolonged (Siegenthaler et al., 2020) sedation 
when administered within the racemate than when administered 
alone. However, the subjective reaction to pinching was reduced for 
a slightly longer duration when dexmedetomidine was administered 
alone rather than with the racemate (Kuusela et al., 2000).

Differences may be the result of pharmacodynamic (PD) or 
pharmacokinetic (PK) interactions between enantiomers. In dogs, 
Kuusela et al. reported no relevant sedative effect of levomedetomi-
dine alone Kuusela et al., 2001). However, interactions at a receptor 
level when the enantiomers are administered together cannot sim-
ply be excluded (Brocks, 2006). Variations in plasma concentrations 
of dexmedetomidine when administered alone or together with 
levomedetomidine (Kuusela et al., 2001) may also explain some of 
the differences. Dexmedetomidine and levomedetomidine undergo 
a significantly different metabolic pathway (Kuusela, 2004). It is un-
known whether dexmedetomidine exhibits a similar behaviour in the 
presence or absence of the other enantiomer. Such a significant PK 
interaction between enantiomers is rather seldom (Brocks,  2006), 
but has been reported with, for example, S-ketamine in ponies 
(Larenza et al., 2007, 2008).

The goal of this study was to investigate the PK behaviour of 
dexmedetomidine in dogs, administered as a pure enantiomer or 
within the racemic compound medetomidine. It was hypothesized 
that plasma concentrations of dexmedetomidine administered alone 
or in the racemate would not differ strongly.

2  |  MATERIAL S AND METHODS

The experiment was approved by the local Committee for Animal 
Experimentation (approval number 30356). The primary aim of 
the present report was to investigate the differences in the PK 
of dexmedetomidine when administered alone or as part of a 
racemate. However, the experiment was part of a larger study 
published elsewhere where the primary aims were to investigate 
the differences between medetomidine and dexmedetomidine 
on antinociception (Siegenthaler et al.,  2020) as well as on the 
non-invasive monitoring of selected cardiopulmonary variables 
(Pleyers et al.,  2020). Therefore, the study design was oriented 
towards these goals.

2.1  |  Sample size, design

The median peak nociceptive withdrawal reflex (NWR) values from 
a previous publication were used to calculate the sample size; the 
details of the sample size calculation are presented elsewhere 
(Siegenthaler et al.,  2020). Eight dogs were included in this rand-
omized crossover study.

For the purposes of the pharmacological analysis, a 20% differ-
ence in plasma concentrations between the two formulations was 

arbitrarily considered a relevant endpoint. Assuming a within-group 
data variance of 15%, the inclusion of eight dogs was considered 
appropriate (Wilcoxon signed-rank test, paired, two-tailed, effect 
size = 1.4, α = .05, 1-β = .9, GPower 3.1).

2.2  |  Animals

The eight dogs included in this study were intact beagles (two fe-
males and six males), bred for research purposes. They were housed 
in small groups, in a dedicated enriched kennel, with access to an 
outdoor course. Physical examinations were regularly performed. 
Selected haematology and blood chemistry were analysed before 
the experiment. Dogs were considered healthy and were not in-
volved in any other study. No drug (other than anthelminthics) was 
administered for at least two months before the trial. Dogs had body 
condition scores of 5 or 6 on a scale of 9 (Laflamme, 1997). They 
were weighed before each session.

Additional details on dogs housing and husbandry, randomiza-
tion, blinding process and other variables assessed (nociceptive tests 
and non-invasive cardiopulmonary monitoring) can be found else-
where (Pleyers et al., 2020; Siegenthaler et al., 2020).

2.3  |  Treatment

Two intravenous (IV) treatments consisting of medetomidine 
(group RAC, Domitor, 1  mg/mL; Orion Corporation; 0.02 mg/kg) 
or dexmedetomidine (group DEX, Dexdomitor, 0.5 mg/mL; Orion 
Corporation; 0.01 mg/kg) were administered both to each dog with 
a wash-out period of 10–14 days. The first treatment was randomly 
assigned (see above); the other drug was administered in the sec-
ond experimental session (Table 1). Approximately 1 h before the 
start of the session, EMLA cream (Aspen Pharma Schweiz GmbH) 
was applied over the cephalic veins, covered with a plastic film 
and wrapped in an occlusive bandage. A 20- or 22-gauge catheter 
(Optiva2 IV Catheter radiopaque, Smiths Medical International Ltd) 
was placed in each cephalic vein, one for drug administration and 
the contralateral for blood sampling. The treatment was diluted in 
saline solution (NaCl 0.9%; Dr G Bichsel AG) up to 2 mL and adminis-
tered by hand over 60 s through the right cephalic catheter. A bolus 
of either saline solution (Group SAL, NaCl 0.9%) or atipamezole 

TA B L E  1  Number (n) of dogs receiving dexmedetimidine (DEX) 
or medetomidine (MED) followed 45 min later by atipamezole (ATI) 
or saline solution (SAL)

n
First treatment (randomized 
order)

Second 
treatment

2 DEX/ATI MED/SAL

2 DEX/SAL MED/ATI

2 MED/ATI DEX/SAL

2 MED/SAL DEX/ATI
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(Group ATI, Antisedan, 5  mg/mL; Orion Corporation; 0.1  mg/kg) 
was administered intramuscularly 45 min after the medetomidine 
or dexmedetomidine injection (Siegenthaler et al., 2020) (Table 1).

2.4  |  Blood sampling and quantification assay

Blood samples (2 mL) were collected from the left cephalic IV catheter 
into EDTA collection tubes (Monovette). One “blank” blood sample was 
always collected before drug administration, and further sampling times 
were 2, 4, 8, 16, 30, 60, 80, 90 and 120 min after the start of the IV infu-
sion (T0). Samples were kept on ice just after collection and until process-
ing. Blood was then centrifuged for 10 min at 1500 g at 10°C, the plasma 
extracted and then stored frozen at −80°C until analysis. The quanti-
fication of dexmedetomidine and levomedetomidine was performed 
by chiral LC–MS/MS as described previously (Bardhi et al., 2021). The 
analytical method was validated in accordance with EMEA/CHMP/
EWP/192217/2009 guidelines at the beginning of the experiment 
(EMA.,  2011). The details of the quantification methodology are pro-
vided elsewhere (Bardhi et al., 2021). The calculated limit of detection 
(LOD) was 0.01 ng/mL, and the lower limit of quantification (LLOQ) was 
0.1 ng/mL. The intraday accuracy and precision were 4.8 [3.1–5.8]% and 
6.2 [4.4–7.0]% for dexmedetomidine, and 2.2 [2.0–3.6]% and 6.7 [6.1–
7.0]% for levomedetomidine, respectively (Bardhi et al., 2021).

2.5  |  Pharmacokinetic analysis

Each step of the PK modelling was performed with a commer-
cially available software (Phoenix 64® v.8.3 WinNonlin® NLME®, 
Pharsight Inc.). The details of the PK analyses and modelling are 
presented in Appendix S1. Non-compartmental analysis (NCA) 
was performed on both levomedetomidine and dexmedetomidine 
plasma concentrations. In addition, a population PK approach was 
applied to describe dexmedetomidine concentration–time course 
by comparing increasingly complex models and sequentially test-
ing inter-individual variability (IIV) on basic PK parameters (i.e. 
volumes (Vi) and clearances (Cli)), as well as potential effects of oc-
casion (first-second), group (medetomidine-dexmedetomidine) or 
atipamezole administration (saline-atipamezole). The Quasi-random 
Parametric Expectation Maximization (QRPEM) algorithm imple-
mented in Phoenix NLME initialized by the NCA estimates was used 
for the popPK analysis. Standard validation methods in popPK were 
used to assess model adequacy (see Appendix S1). Proportional 
prediction correction was applied for the visual predictive check 
(VPC). Secondary parameters were derived from the final popPK 
estimates in order to compare with NCA results (see Appendix S1).

2.6  |  Statistical analysis

In addition to the PK analyses, the differences in dexmedetomidine 
plasma concentrations between groups were tested using two-way 

ANOVA for repeated measures followed by Holm–Sidak pairwise 
multiple comparisons. Differences between NCA PK parameters 
including volume, clearance and area under the curve (AUC) were 
tested with a Wilcoxon signed-rank test (paired samples). Statistical 
evaluation was performed with the SigmaStat 3.5 software package, 
and significance was set at p = .05. Due to the small number of sam-
ples, the data are presented as median [IQR 25%–75%], regardless 
of its distribution.

3  |  RESULTS

All dogs appeared sedated after each treatment. There was no com-
plication observed at any stage. A total of 14/160 blood samples 
were discarded (inadequate sampling) or missing.

3.1  |  Concentration time course of 
dexmedetomidine with and without atipamezole

Analysis of differences for pooled plasma concentrations of dex-
medetomidine (Figure 1) between group ATI (n = 8) and group SAL 
(n  =  8) revealed no significant difference neither during the first 
30 min after T0 (p = .89), nor afterwards (p > .18).

3.2  |  Concentration time course of dex- and 
levomedetomidine

After administration of racemic medetomidine (0.02 mg/kg, IV), both 
enantiomers dex- and levomedetomidine were measurable. Plasma 
concentration of levomedetomidine was 51.4 [51.4–56.1]% lower 
than the concentration of dexmedetomidine (Figure 2). As expected, 
no levomedetomidine was measured at any time point after adminis-
tration of the pure enantiomer dexmedetomidine.

The dexmedetomidine plasma concentrations from the dogs re-
ceiving the pure dexmedetomidine enantiomer (DEX) at 0.01 mg/kg 
IV were 18.5 [3.2–26.8]% lower than from the dogs receiving it as 
part of the racemic mixture (medetomidine, RAC) (Figure 3). This dif-
ference was neither statistically significant (p = .071) nor considered 
clinically relevant (<20%).

3.3  |  Pharmacokinetic analysis

The results of both NCA and popPK modelling are presented in 
Appendix S1. Table 2 shows the final estimates for levo- and dex-
medetomidine NCA as well as the NLME analysis for dexmedetomi-
dine. Volumes and clearances obtained from NCA were significantly 
different (p =  .016 in both cases) between levomedetomidine and 
dexmedetomidine. There was no significant difference between the 
AUCs for dexmedetomidine after administration as a racemic mix-
ture or as a single enantiomer (p = .69).
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The final NLME model was a standard two-compartment mam-
millary model with combined additive and multiplicative residual 
error model. An exponential model was finally retained to describe 
the IIVs on clearance (Cl1) and central and peripheral volumes of dis-
tribution (V1 and V2, respectively). No effect of occurrence, levome-
detomidine or atipamezole could be observed on dexmedetomidine 
PK parameters. Standard validation methods, shown in Figure  4, 
support the good predictive performances of the model.

4  |  DISCUSSION

This study supports previous observations that medetomidine un-
dergoes stereoselective metabolization with markedly lower plasma 

concentrations of levomedetomidine compared to dexmedetomi-
dine. Dexmedetomidine did not appear to convert to levomedeto-
midine. Dexmedetomidine plasma concentrations were similar after 
administration of dexmedetomidine as a pure enantiomer or as a 
racemic mixture that included levomedetomidine. Atipamezole did 
not seem to interact with the PK of dexmedetomidine.

The PK parameters obtained here from modelling the plasma 
concentration of intravenous dexmedetomidine were close to previ-
ously reported values in the same animal species (Bennett et al., 2016; 
Honkavaara et al., 2012; Kuusela et al., 2000). Enantioselective PK 
of dex- and levo- medetomidine observed here confirmed former 
reports. As in previous studies, the plasma concentration of levo-
medetomidine was significantly lower than dexmedetomidine after 
administration of the racemic mixture (Bennett et al.,  2016). The 

F I G U R E  2  Plasma concentrations over 
time for dex- and levomedetomidine after 
administration of racemic medetomidine 
(0.02 mg/kg, IV) in eight beagles. Data are 
presented as median [IQR 25%–75%]

F I G U R E  1  Dexmedetomidine plasma 
concentrations over time in eight beagles 
(crossover design) after administration of 
dexmedetomidine (0.01 mg/kg, IV, n = 16, 
pooled data from both groups receiving 
either dexmedetomidine alone or within 
the racemate), additionally receiving either 
atipamezole (0.1 mg/kg) or saline (NaCl 
0.9%) intramuscularly at 45 min. Data are 
presented as median [IQR 25%–75%]
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peak concentration of levomedetomidine was less than 60% that of 
dexmedetomidine. There was a marked difference in the volume of 
distribution while elimination half-life was quite similar between the 
enantiomers. Potential reasons for these discrepancies are not re-
ported and cannot be further discussed here.

A previous study observed that atipamezole increased the clear-
ance of medetomidine in dogs when administered at 30 min interval 
(Salonen et al., 1995). In the present study, the PK parameters were 
not significantly different with or without atipamezole administered 
45 min after dexmedetomidine. A similar observation has been re-
ported for dairy cows that had been administered atipamezole in-
travenously 60 min after medetomidine (Ranheim et al., 1999). The 
effect of IM atipamezole on dexmedetomidine PK was not the pri-
mary objective of the present investigation and both study design 
and number of animals restrict validity of these results. The anal-
ysis was performed to distinguish between the potential effects 

of atipamezole and racemic administration on dexmedetomidine 
disposition. It was not expected to show an effect of intramuscu-
lar atipamezole on dexmedetomidine concentrations that had been 
measured only four times during 75  min. Such an extrapolation 
should be taken with caution.

The main limitation of this study is the small number of obser-
vations. The conclusions presented require further confirmation. 
However, the crossover design and the population PK approach 
employed in this study allow a report of the variability of dexmede-
tomidine concentrations at the same dose and in the same subjects 
with or without concomitant administration of levomedetomidine. 
A certain degree of intra-individual PK variability is expected even 
in a crossover design (Chang & Wong, 1997). The IIV should be ac-
counted for in the population model.

The sedative and analgesic effects of dexmedetomidine observed 
during the present study were reported previously (Siegenthaler 

F I G U R E  3  Dexmedetomidine 
plasma concentrations over time after 
administration of racemic medetomidine 
(0.02 mg/kg, IV, RAC) or the pure 
enantiomer dexmedetomidine (0.01 mg/
kg, IV, DEX) in eight beagles (crossover 
design). Data are presented as median 
[IQR 25%–75%]

TA B L E  2  Pharmacokinetic parameters of levo- and dexmedetomidine (0.01 mg/kg, IV) in eight beagles

Cmax t1/2 V V2 Vss Cl Cl2 AUC MRT

ng/mL h L/kg L/kg L/kg L/h/kg L/h/kg h ng/mL h

Levomedetomidine (Non-compartmental analysis)

Median 5.7 0.93 2.80 – 2.56 1.96 – 5.11 1.22

IQR 25%–75% 4.7–6.3 0.83–1.32 2.58–2.97 – 2.55–2.74 1.79–2.15 – 4.66–5.58 1.18–1.79

Dexmedetomidine (non-compartmental analysis)

Median 9.7 0.80 1.47 – 1.40 1.24 – 8.09 1.14

IQR 25%–75% 7.2–10.4 0.75–0.93 1.31–1.83 – 1.28–1.63 1.05–1.59 – 6.29–9.50 0.99–1.28

Dexmedetomidine (final population compartmental analysis)

Estimates – 0.92 1.03 0.41 1.45 1.16 1.87 8.65 1.25

CI 2.5%–97.5% – 0.68–1.06 0.92–1.15 0.13–0.70 1.31–1.62 0.95–1.37 1.35–2.38 6.52–9.70 0.95–1.42

Note: Data for dexmedetomidine are pooled from crossover administration either as pure enantiomer or as part of a racemic mixture (medetomdiine).
Abbreviations: Cmax, maximal measured concentration; V, volume of distribution; Vss, volume of distribution at steady state; cl, clearance; AUC, area 
under the curve; MRT, mean residence time; t1/2, terminal half-life.
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et al., 2020). A longer lasting sedative effect of medetomidine was ob-
served compared to dexmedetomidine. It was hypothesized that this 
could have been the result of different plasma concentrations of dex-
medetomidine but PK analyses had not been performed at the time 
of the first manuscript preparation. The present analysis proved this 
hypothesis to be wrong. A reinforcing effect of levomedetomidine 
on sedation from dexmedetomidine remains controversial as levome-
detomidine did not elicit relevant behavioural effects when adminis-
tered alone (Kuusela et al., 2001). High doses of levomedetomidine 
even decreased the sedation quality from dexmedetomidine (Kuusela 
et al., 2001). Now that the PK has been characterized and is in agree-
ment with former results, further investigation of the observed effect 
is required to demonstrate whether there may be a clinically relevant 
advantage of using either medetomidine or dexmedetomidine.

5  |  CONCLUSION

Based on the present study, dexmedetomidine does not seem to un-
dergo significantly different PK when administered either alone or 
as part of the racemic mixture in otherwise unmedicated dogs.
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