177 research outputs found

    Quasi-classical versus non-classical spectral asymptotics for magnetic Schroedinger operators with decreasing electric potentials

    Full text link
    We consider the Schroedinger operator H on L^2(R^2) or L^2(R^3) with constant magnetic field and electric potential V which typically decays at infinity exponentially fast or has a compact support. We investigate the asymptotic behaviour of the discrete spectrum of H near the boundary points of its essential spectrum. If the decay of V is Gaussian or faster, this behaviour is non-classical in the sense that it is not described by the quasi-classical formulas known for the case where V admits a power-like decay.Comment: Corrected versio

    Resonances Width in Crossed Electric and Magnetic Fields

    Full text link
    We study the spectral properties of a charged particle confined to a two-dimensional plane and submitted to homogeneous magnetic and electric fields and an impurity potential. We use the method of complex translations to prove that the life-times of resonances induced by the presence of electric field are at least Gaussian long as the electric field tends to zero.Comment: 3 figure

    On the discrete spectrum of spin-orbit Hamiltonians with singular interactions

    Full text link
    We give a variational proof of the existence of infinitely many bound states below the continuous spectrum for spin-orbit Hamiltonians (including the Rashba and Dresselhaus cases) perturbed by measure potentials thus extending the results of J.Bruening, V.Geyler, K.Pankrashkin: J. Phys. A 40 (2007) F113--F117.Comment: 10 pages; to appear in Russian Journal of Mathematical Physics (memorial volume in honor of Vladimir Geyler). Results improved in this versio

    Soft normed rings

    Get PDF

    Borexino's search for low-energy neutrinos associated with gravitational wave events from GWTC-3 database

    Full text link
    The search for neutrino events in correlation with gravitational wave (GW) events for three observing runs (O1, O2 and O3) from 09/2015 to 03/2020 has been performed using the Borexino data-set of the same period. We have searched for signals of neutrino-electron scattering with visible energies above 250 keV within a time window of 1000 s centered at the detection moment of a particular GW event. The search was done with three visible energy thresholds of 0.25, 0.8 and 3.0 MeV.Two types of incoming neutrino spectra were considered: the mono-energetic line and the spectrum expected from supernovae. The same spectra were considered for electron antineutrinos detected through inverse beta-decay (IBD) reaction. GW candidates originated by merging binaries of black holes (BHBH), neutron stars (NSNS) and neutron star and black hole (NSBH) were analysed separately. Additionally, the subset of most intensive BHBH mergers at closer distances and with larger radiative mass than the rest was considered. In total, follow-ups of 74 out of 93 gravitational waves reported in the GWTC-3 catalog were analyzed and no statistically significant excess over the background was observed. As a result, the strongest upper limits on GW-associated neutrino and antineutrino fluences for all flavors (\nu_e, \nu_\mu, \nu_\tau) have been obtained in the (0.5 - 5.0) MeV neutrino energy range.Comment: 13 pages, 8 figure

    Novel techniques for alpha/beta pulse shape discrimination in Borexino

    Full text link
    Borexino could efficiently distinguish between alpha and beta radiation in its liquid scintillator by the characteristic time profile of their scintillation pulse. This alpha/beta discrimination, first demonstrated at the tonne scale in the Counting Test Facility prototype, was used throughout the lifetime of the experiment between 2007 and 2021. With this method, alpha events are identified and subtracted from the beta-like solar neutrino events. This is particularly important in liquid scintillator as alpha scintillation is quenched many-fold. In Borexino, the prominent Po-210 decay peak was a background in the energy range of electrons scattered from Be-7 solar neutrinos. Optimal alpha-beta discrimination was achieved with a "multi-layer perceptron neural network", which its higher ability to leverage the timing information of the scintillation photons detected by the photomultiplier tubes. An event-by-event, high efficiency, stable, and uniform pulse shape discrimination was essential in characterising the spatial distribution of background in the detector. This benefited most Borexino measurements, including solar neutrinos in the \pp chain and the first direct observation of the CNO cycle in the Sun. This paper presents the key milestones in alpha/beta discrimination in Borexino as a term of comparison for current and future large liquid scintillator detectorsComment: 13 pages, 14 figure

    Experimental Detection of the CNO Cycle

    Get PDF
    Borexino recently reported the first experimental evidence for a CNO neutrino. Since this process accounts for only about 1% of the Sun’s total energy production, the associated neutrino flux is remarkably low compared to that of the pp chain, the dominant hydrogen-burning process. This experimental evidence for the existence of CNO neutrinos was obtained using a highly radio-pure Borexino liquid scintillator. Improvements in the thermal stabilization of the detector over the last five years have allowed us to exploit a method of constraining the rate of 210Bi background. Since the CNO cycle is dominant in massive stars, this result is the first experimental evidence of a major stellar hydrogen-to-helium conversion mechanism in the Universe

    Solar and geoneutrinos

    Get PDF
    Thanks to the progress of neutrino physics, today we are able of exploiting neutrinos as a tool to study astrophysical objects. The latter in turn serve as unique sources of elusive neutrinos, which fundamental properties are still to be understood. This contribution attempts to summarize the latest results obtained by measuring neutrinos emitted from the Sun and geoneutrinos produced in radioactive decays inside the Earth, with a particular focus on a recent discovery of the CNO-cycle solar neutrinos by Borexino. Comprehensive measurement of the pp-chain solar neutrinos and the first directional detection of sub-MeV solar neutrinos by Borexino, the updated 8B solar neutrino results of Super-Kamiokande, as well as the latest Borexino and KamLAND geoneutrino measurements are also discussed

    Identification of the cosmogenic 11C background in large volumes of liquid scintillators with Borexino

    Get PDF
    Cosmogenic radio-nuclei are an important source of background for low-energy neutrino experiments. In Borexino, cosmogenic 11C decays outnumber solar pep and CNO neutrino events by about ten to one. In order to extract the flux of these two neutrino species, a highly efficient identification of this background is mandatory. We present here the details of the most consolidated strategy, used throughout Borexino solar neutrino measurements. It hinges upon finding the space-time correlations between 11C decays, the preceding parent muons and the accompanying neutrons. This article describes the working principles and evaluates the performance of this Three-Fold Coincidence (TFC) technique in its two current implementations: a hard-cut and a likelihood-based approach. Both show stable performances throughout Borexino Phases II (2012–2016) and III (2016–2020) data sets, with a 11C tagging efficiency of ∼90 % and ∼ 63–66 % of the exposure surviving the tagging. We present also a novel technique that targets specifically 11C produced in high-multiplicity during major spallation events. Such 11C appear as a burst of events, whose space-time correlation can be exploited. Burst identification can be combined with the TFC to obtain about the same tagging efficiency of ∼90% but with a higher fraction of the exposure surviving, in the range of ∼ 66–68 %
    • …
    corecore