18 research outputs found

    A new method to compensate impedance artefacts for Li-ion batteries with integrated micro-reference electrodes

    Full text link
    In order to measure the electrochemical characteristics of both electrodes inside Li-ion batteries, micro-reference electrodes (μREF) turned out to be very useful. However, measuring the electrochemical impedance with respect to μREF can lead to severe measurement artefacts, making a detailed analysis of the impedance spectra complicated. In the present work a new method is developed in which high-frequency measurement artefacts can be compensated. A theoretical analysis, using equivalent circuit models of the measurement setups, shows that if two different impedance measurements are averaged, the impedance contributions from the measurement leads can be completely eliminated. The theoretical analysis is validated using Li-ion batteries with seven integrated μREF, having all different impedances. The measurement results show that artefacts are dominating for high-impedance μREF in the high frequency range. However, these artefacts can be fully compensated by averaging two separate impedance measurements, as predicted by theory. This easily makes it possible to perform artefact-free impedance measurements, even at high frequencies

    A comparison and accuracy analysis of impedance-based temperature estimation methods for Li-ion batteries

    Full text link
    In order to guarantee safe and proper use of Lithium-ion batteries during operation, an accurate estimate of the battery temperature is of paramount importance. Electrochemical Impedance Spectroscopy (EIS) can be used to estimate the battery temperature and several EIS-based temperature estimation methods have been proposed in the literature. In this paper, we argue that all existing EIS-based methods implicitly distinguish two steps: experiment design and parameter estimation. The former step consists of choosing the excitation frequency and the latter step consists of estimating the battery temperature based on the measured impedance resulting from the chosen excitation. By distinguishing these steps and by performing Monte-Carlo simulations, all existing methods are compared in terms of accuracy (i.e., mean-square error) of the temperature estimate. The results of the comparison show that, due to different choices in the two steps, significant differences in accuracy of the estimate exist. More importantly, by jointly selecting the parameters of the experiment-design and parameter-estimation step, a more-accurate temperature estimate can be obtained. In case of an unknown State-of-Charge, this novel method estimates the temperature with an average absolute bias of 0.4. °C and an average standard deviation of 0.7. °C using a single impedance measurement for the battery under consideration

    Overpotential analysis of graphite-based Li-ion batteries seen from a porous electrode modeling perspective

    Get PDF
    The overpotential of Li-ion batteries is one of the most relevant characteristics influencing the power and energy densities of these battery systems. However, the intrinsic complexity and multi-influencing factors make it challenging to analyze the overpotential precisely. To decompose the total overpotential of a battery into various individual components, a pseudo-two-dimensional (P2D) model has been adopted and used for electrochemical simulations of a graphite-based porous electrode/Li battery. Analytical expressions for the total overpotential have been mathematically derived and split up into four terms, associated with the electrolyte concentration overpotential, the Li concentration overpotential in the solid, the kinetic overpotential, and the ohmic overpotential. All these four terms have been separately analyzed and are found to be strongly dependent on the physical/chemical battery parameters and the reaction-rate distribution inside the porous electrode. The reaction-rate distribution of the porous electrode is generally non-uniform and shows dynamic changes during (dis)charging, resulting in fluctuations in the four overpotential components. In addition, the disappearance of the phase-change information in the voltage curve of the graphite-based porous electrode/Li battery under moderate and high C-rates is ascribed to the Li concentration overpotential among solid particles, resulting from the non-uniform reaction-rate distribution

    Impedance-based temperature measurement method for organic light-emitting diodes (OLEDs)

    No full text
    \u3cp\u3eThis short communication presents a method to measure the integral temperature of organic light-emitting diodes (OLEDs). Based on electrochemical impedance measurements at OLEDs, a non-zero intercept frequency (NZIF) can be determined which is related to the OLED temperature. The NZIF is defined as the frequency at which the imaginary part of the impedance is equal to a predefined (non-zero) constant. The advantage of using an impedance-based temperature indication method through an NZIF is that no hardware temperature sensors are required and that temperature measurements can be performed relatively fast. An experimental analysis reveals that the NZIF is clearly temperature dependent and, moreover, also DC current dependent. Since the NZIF can readily be measured this impedance-based temperature indication method is therefore simple and convenient for many applications using OLEDs and offers an alternative for traditional temperature sensing.\u3c/p\u3

    Planar and 3D deposition of Li<inf>4</inf>Ti<inf>5</inf>O<inf>12</inf> thin film electrodes by MOCVD

    Full text link
    Li4Ti5O12 is well known to be a safe and efficient anode material for Li-ion batteries. A metal-organic chemical vapor deposition process has been developed for the synthesis of Li4Ti5O12 thin film anodes on planar and 3D substrates. The influences of various deposition parameters, including precursor flow rates and post-annealing temperatures, have been investigated by material and electrochemical analyses. Li4Ti5O12 thin films deposited at the optimized process parameters showed a high crystallinity and high electrochemical activity. A reversible storage capacity of 151 mAh/g was achieved at a current of 0.5 C, corresponding to 86.3% of the theoretical specific capacity of Li4Ti5O12. Up to almost 600 cycles, the electrodes showed no significant capacity loss. Furthermore, the deposited thin film anodes also showed excellent rate performance. Compared to the storage capacity at 0.5 C, 93% of the capacity was maintained at 10 C. Thin films were also deposited on highly structured substrates to investigate the uniformity and electrochemical performance. With the same footprint area, the 3D Li4Ti5O12 film anode showed a 2.5 times higher storage capacity than planar electrode

    A review on various temperature-indication methods for Li-ion batteries

    No full text
    \u3cp\u3eTemperature measurements of Li-ion batteries are important for assisting Battery Management Systems in controlling highly relevant states, such as State-of-Charge and State-of-Health. In addition, temperature measurements are essential to prevent dangerous situations and to maximize the performance and cycle life of batteries. However, due to thermal gradients, which might quickly develop during operation, fast and accurate temperature measurements can be rather challenging. For a proper selection of the temperature measurement method, aspects such as measurement range, accuracy, resolution, and costs of the method are important. After providing a brief overview of the working principle of Li-ion batteries, including the heat generation principles and possible consequences, this review gives a comprehensive overview of various temperature measurement methods that can be used for temperature indication of Li-ion batteries. At present, traditional temperature measurement methods, such as thermistors and thermocouples, are extensively used. Several recently introduced methods, such as impedance-based temperature indication and fiber Bragg-grating techniques, are under investigation in order to determine if those are suitable for large-scale introduction in sophisticated battery-powered applications.\u3c/p\u3

    Non-Zero Intercept Frequency: An Accurate Method to Determine the Integral Temperature of Li-Ion Batteries

    Full text link
    A new impedance-based approach is introduced in which the integral battery temperature is related to other frequencies than the recently developed zero-intercept frequency (ZIF). The advantage of the proposed non-ZIF (NZIF) method is that measurement interferences, resulting from the current flowing through the battery (pack), can be avoided at these frequencies. This gives higher signal-to-noise ratios (SNRs) and, consequently, more accurate temperature measurements. A theoretical analysis, using an equivalent circuit model of a Li-ion battery, shows that NZIFs are temperature dependent in a way similar to the ZIF and can therefore also be used as a battery temperature indicator. To validate the proposed method, impedance measurements have been performed with individual LiFePO4 batteries and with large LiFePO4 battery packs tested in a full electric vehicle under driving conditions. The measurement results show that the NZIF is clearly dependent on the integral battery temperature and reveals a similar behavior to that of the ZIF method. This makes it possible to optimally adjust the NZIF method to frequencies with the highest SNR

    An advanced all-solid-state Li-ion battery model

    No full text
    A new advanced mathematical model is proposed to accurately simulate the behavior of all-solid-state Li-ion batteries. The model includes charge-transfer kinetics at both electrode/electrolyte interfaces, diffusion and migration of mobile lithium ions in the electrolyte and positive electrode. In addition,\u3cbr/\u3eelectrical double layers are considered, representing the space-charge separation phenomena at both electrode/electrolyte interfaces. The model can be used to simultaneously study the individual overpotential and impedance contributions together with concentration gradients and electric fields across\u3cbr/\u3ethe entire battery stack. Both galvanostatic discharge and impedance simulations have been experimentally validated with respect to 0.7 mAh Li/LiPON/LiCoO2 thin film, all-solid-state, batteries. The model shows good agreement with galvanostatic discharging, voltage relaxation upon current interruption,\u3cbr/\u3eand impedance measurements. From the performed AC and DC simulations it can be concluded that the overpotential across the LiPON electrolyte is most dominant and is therefore an important rate limiting factor. In addition, it is found that both ionic and electronic diffusion coefficients in the LiCoO2\u3cbr/\u3eelectrode seriously influence the battery performance. The present model is generally applicable to all solid-state batteries where combined ionic and electronic transport takes place and allows for optimizing the battery components to increase the effective energy density, which leads to a decreasing demand for materials and costs

    Sensorless battery temperature measurements based on electrochemical impedance spectroscopy

    No full text
    A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles
    corecore