23 research outputs found

    Biochemical features of native red wines and genetic diversity of the corresponding grape varieties from Campania Region

    Get PDF
    Campania region has always been considered one of the most appreciated Italian districts for wine production. Wine distinctiveness arises from their native grapevines. To better define the chemical profile of Campania autochthonous red grape varieties, we analysed the phenolic composition of Aglianico di Taurasi, Aglianico del Vulture, Aglianico del Taburno, Piedirosso wines, and a minor native variety, Lingua di Femmina in comparison with Merlot and Cabernet Sauvignon, as reference cultivars. A genetic profiling was also carried out using microsatellite molecular markers with high polymorphic and unambiguous profiles. Principal component analysis applied to 72 wines based on the 18 biochemical parameters, explained 77.6% of the total variance and highlighted important biological entities providing insightful patterns. Moreover, comparison of SSR-based data with phenylpropanoid molecules exhibited a statistically significant correlation. Our approach might be reasonably adopted for future characterisations and traceability of grapevines and corresponding wines

    STAT1 and STAT3 phosphorylation by porins are independent of JAKs but are dependent on MAPK pathway and plays a role in U937 cells production of interleukin-6.

    No full text
    A group of transcription factors, termed signal transducers and activators of transcription (STATs), appears to orchestrate the downstream events propagated by cytokine/growth factor interactions with their cognate receptors. Similarly, cytoplasmic Janus kinases (JAKs) seem to play a critical role in diverse signal transduction pathways that govern cellular survival, proliferation, differentiation and apoptosis. In this work, we analysed the effects of the Salmonella enterica serovar Typhimurium porins on signaling by the JAK/STAT pathway and IL-6 release in U937 cells. Porins and LPS of membrane from Gram-negative bacteria are factors implicated in septic shock. In our assays porins induce interleukin-6 (IL-6) release (110+/-2.6pg/ml) 24h after stimulation and STAT1/STAT3 tyrosine (Tyr701/Tyr705) and serine (Ser727) phosphorylation after 15min. By using several selective inhibitors we demonstrate that porins modulate the activation of STAT1/STAT3 through mitogen activated protein kinases (MAPKs) and not JAKs. Furthermore, we demonstrated that STAT1 and STAT3 are not involved in the modulation of IL-6 release in U937 cells stimulated with porins. Inhibition of tyrosine/serine phosphorylation mediated by MAPKs of STAT1 and STAT3 decrease the IL-6 secretion following porin stimulation. Therefore, suggesting a key role of this pathway in phosphorylation of Ser 727 in STAT1 and STAT3. These results are confirmed by porin or LPS-induced nuclear translocation of STAT1 and STAT3 in U937 cells

    Cellular cholesterol involvement in Src, PKC, and p38/JNK transduction pathways by porins.

    No full text
    Biological membranes are described as a mosaic of different domains where interactions between membrane components induce the formation of subdomains with different characteristics and functions. Lipids play an important role in the formation of lipid-enriched microdomains where they dynamically associate to form platforms important for membrane protein sorting and construction of signaling complexes. Cholesterol confi ned in lipid domains is a crucial component required by microorganisms, directly or indirectly, to enter or exit the intracellular compartment. Cellular activation mediated by superfi cial bacterial component may be modifi ed by local cholesterol depletion. Therefore, new perspectives for unconventional therapeutic intervention in Gramnegative infections may be envisaged. We tested this hypothesis by using methyl-β-cyclodextrin (mβCD) as a cholesterol-complexing agent to alter the U937 plasma membrane cholesterol content. Our results demonstrate that cholesterol depletion of U937 cells inhibited Salmonella enterica serovar Typhimurium porins-mediated phosphorylation of Src kinase family, protein kinase C (PKC), JNK, and p38, while cholesterol repletion restored the phosphorylation. Lipopolysaccharide (LPS) extracted from the same bacterial strain has been used as a control. Our data demonstrate that the lack of activation of signal transduction pathway observed following cholesterol depletion differently modulates the release of interleukin-6 (IL-6) or tumor necrosis factor-α (TNF-α), suggesting that Src, associated to lipid domains, may represent an important pathway in Gram-negative-induced cellular signal
    corecore