9,217 research outputs found

    The mass spectra and decay properties of dimesonic states, using the Hellmann potential

    Full text link
    Mass spectra of the dimesonic (meson-antimeson) molecular states are computed using the Hellmann potential in variational approach, which consists of relativistic correction to kinetic energy term as well as to the potential energy term. For the study of molecular bound state system, the Hellmann potential of the form V(r)=αsr+BeCrrV(r)=-\frac{\alpha_{s}}{r} + \frac{B e^{-Cr}}{r} is being used. The one pion exchange potential (OPEP) is also incorporated in the mass calculation. The digamma decay width and decay width of the dimesonic system are evaluated using the wave function. The experimental states such as f0(980)f_{0}(980), b1(1235)b_{1}(1235), h1(1380)h_{1}(1380), a0(1450)a_{0}(1450), f0(1500)f_{0}(1500), f2(1525)f_{2}'(1525),f2(1565)f_{2}(1565), h1(1595)h_{1}(1595), a2(1700)a_{2}(1700), f0(1710)f_{0}(1710), f2(1810)f_{2}(1810) are compared with dimesonic states. Many of these states (masses and their decay properties) are close to our theoretical predictions.Comment: 11 pages, 4 table

    Decay and Decoupling of heavy Right-handed Majorana Neutrinos in the L-R model

    Get PDF
    Heavy right-handed neutrinos are of current interest. The interactions and decay of such neutrinos determine their decoupling epoch during the evolution of the universe. This in turn affects various observable features like the energy density, nucleosynthesis, CMBR spectrum, galaxy formation, and baryogenesis. Here, we consider reduction of right-handed electron-type Majorana neutrinos, in the left-right symmetric model, by the WR+ - WR- channel and the channel originating from an anomaly, involving the SU(2)R gauge group, as well as decay of such neutrinos. We study the reduction of these neutrinos for different ranges of left-right model parameters, and find that, if the neutrino mass exceeds the right-handed gauge boson mass, then the neutrinos never decouple for realistic values of the parameters, but, rather, decay in equilibrium. Because there is no out-of-equilibrium decay, no mass bounds can be set for the neutrinos.Comment: Latex, 16 pages, No figures. Some additions in the text and references. Conclusions unaffected. To appear in Eur. Phys. J.

    New Bands in the A-X System Of Cul and its Dissociation Energy

    Get PDF

    Effective Density of Rotating Nucleons and Moment of Inertia Calculations of Deformed Nuclei

    Get PDF
    corecore