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Abstract

Heavy right-handed neutrinos are of current interest. The interactions and decay of such neu-

trinos determine their decoupling epoch during the evolution of the universe. This in turn affects

various observable features like the energy density, nucleosynthesis, CMBR spectrum, galaxy for-

mation, and baryogenesis. Here, we consider reduction of right-handed electron-type Majorana

neutrinos, in the left-right symmetric model, by the W+

R
W−

R
channel and the channel originating

from an anomaly, involving the SU(2)R gauge group, as well as decay of such neutrinos. We study

the reduction of these neutrinos for different ranges of left-right model parameters, and find that,

if the neutrino mass exceeds the right-handed gauge boson mass, then the neutrinos never decou-

ple for realistic values of the parameters, but, rather, decay in equilibrium. Because there is no

out-of-equilibrium decay, no mass bounds can be set for the neutrinos.
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1 Introduction

If a see-saw mechanism [1] is to account for left-handed electron neutrino ν masses suffi-
ciently small to be consistent with current ideas on neutrino oscillations, right-handed N
neutrinos with mass, M , in the TeV scale come into the picture [2, 3]. High N masses in
the range 1-20 TeV, and even higher masses, have been considered in studies of leptogenesis
– baryogenesis [2, 4, 5] and e−e− collisions [3]. While some studies [5] consider M smaller
than MW , the right-handed WR boson mass, others specifically use N masses greater than
the WR mass [3, 6]. As cosmological and laboratory lower bounds for Z ′, WR masses are
of the order of 0.5 TeV, 1.6-3.2 TeV, respectively [7], there is no reason not to consider N
masses greater than Z ′, WR masses. Cosmological mass bounds for M , with M ≫ MW ,
have been considered in [8]-[12].

In a recent work [12], (B + L)–violation from an anomaly, involving the SU(2)R gauge
group [2, 13, 14], was considered as a generation/reduction channel for N neutrinos satis-
fying M > MW . It was found that this anomalous channel played a role, in the decoupling
of such neutrinos, at least as important as the NN̄ → W+

R W−
R channel (each of these chan-

nels was found more important than the NN̄ → FF̄ channel, F representing a relevant
fermion). Matrix elements for NN̄ → FF̄ and NN̄ → W+

R W−
R were calculated in [12] from

the Left-Right symmetric extension [15, 16] of the standard model, as an illustration.
In the above work [12], the N neutrinos were assumed to be stable, for simplicity.

If, however, the Left-Right symmetric model (L-R model, hereafter) is to be taken as a
serious working basis, N neutrinos cannot be considered to be stable. Decays involving
ν − N mixing, WL − WR mixing, and generation mixing, and CP-violating decays have
been extensively studied. The last scenario has been widely used in generating lepton and,
hence, baryon number from decay of Majorana-type N neutrinos [4, 5, 17, 18, 19]. If the
N mass is considered to be greater than the WR mass, then these decay channels will be
marginalised by the channel N → W+

R + e−. Such a fast decay should have important
effects on decoupling. It is this which is studied in detail in the present paper. The effect
on leptogenesis has already received considerable attention [20].

The effect of the decay of massive neutrinos on energy density, nucleosynthesis, the
Cosmic Microwave Background Radiation (CMBR), galaxy formation, and stellar evolution
has been well-studied [21, 22]. In these studies, the decay time was taken to be large
(typically, larger than 100-200 seconds), and the effect of decay at the crucial epochs followed
up. The decay time was chosen greater than the decoupling time, i.e., it was assumed that
the neutrinos first decoupled, and, then, their cosmological and astrophysical effects were
felt, as a result of subsequent out-of-equilibrium decay [22]. If a fast decay like N → W+

R +e−

is considered, the relationship of decoupling and decay may not be like this, and the two
have been considered, in the present paper, together, in one Boltzmann equation.

The plan of the paper is as follows. Section 1 is the Introduction. In section 2, the
thermally averaged NN̄ → W+

R W−
R annihilation cross-section times relative velocity and

the thermally averaged decay rate are calculated in the L-R model, assuming pure Majo-
rana neutrinos. The anomalous rate per unit volume, used in ref.[12], is slightly modified
to accommodate pure Majorana neutrinos. In section 3, the Boltzmann equation is writ-
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ten down and treated approximately to obtain a decoupling criterion. The possibility of
decoupling is investigated numerically. Section 4 discusses the conclusions.

2 Annihilation, Decay, and Anomalous Reduction of Right-

handed neutrinos: Thermal averages in L-R model

2.1 Summary of relevant features of the L-R model

In the L-R model, there are two doublets (ν, eL) and (N, eR) belonging to the representations
(1
2 , 0,−1) and (0, 1

2 ,−1), respectively, of SU(2)L × SU(2)R ×U(1)B−L, where the quantum
numbers refer to the values of TL, TR, and B − L respectively. To simplify the issues, only
one generation is considered (the lightest), and N − ν, WL − WR, and Z − Z ′ mixings are
neglected.

The symmetry-breaking from SU(2)L × SU(2)R × U(1)B−L → SU(2)L × U(1)Y is
achieved by means of a scalar triplet (TL = 0, TR = 1 and B −L = 2) ∆ ≡ (∆++,∆+,∆0),
putting < ∆0 >= vR/

√
2 (chosen real). The right-handed gauge boson becomes massive

due to the piece of the Lagrangian

L∆W+W− = Dµ∆†Dµ∆ (1)

with Dµ = ∂µ + ig ~T . ~Wµ + i(g′/2)Bµ. From now on, the subscript R is dropped except when
essential. The Ti form a 3 × 3 representation of the SU(2) generators in a spherical basis.
Z ′

µ has the definition

Z ′
µ = (

√
cos 2θ/cos θ)W µ

3 − tan θBµ (2)

(1) gives a W mass M2
W = 1

2g2v2
R, and an interaction

LHW+W− =
√

2gMW W+
µ W µ−H (3)

where H(x)/
√

2 = Re(∆0(x)) − vR/
√

2, the displaced neutral Higgs field.
Neglecting Z − Z ′ mixing, one gets the Z ′ neutral current piece

LZ′

NN̄ = (g/2
√

cos 2θ) cos θN̄γµPRNZ ′
µ. (4)

θ is the weak mixing angle. The required charged current piece of the Lagrangian is

LW
Ne = (g/

√
2)(N̄γµPReWµ + h.c.). (5)

The Z ′,W+,W− interaction piece is

LZ′

W+W− = −ig(
√

cos 2θ/ cos θ)[Z ′µ(∂µW+
ν W ν− − ∂νW

+
µ W ν− − ∂µW−

ν W ν+

+∂νW
−
µ W ν+) +

1

2
(∂µZ ′

ν − ∂νZ
′
µ)(W µ+W ν− − W µ−W ν+)] (6)

The Majorana mass of N is thought to arise from the piece

LRR̄∆ = fRTCǫ(~τ/
√

2).~∆R + h.c. (7)
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where RT is the SU(2)R doublet (N, eR), C is the charge conjugation matrix, and ǫ = iτ2.
(~τ/

√
2).~∆ is the matrix

(

∆+/
√

2 ∆++

∆0 −∆+/
√

2

)

,

and ǫ(~τ/
√

2).~∆ is symmetric. This term gives a Majorana mass for the N neutrinos, M =
fvR/

√
2, so that g/f = MW /M = rW , and an interaction

LNN̄H = (g/
√

2rW )N̄CHN (8)

NC is the field conjugate to N . It has been pointed out [19, 23] that the effective one-
loop mass matrix for multi-generation unstable Majorana neutrinos is not Hermitian and,
strictly speaking, N 6= NC . But, here, at the level of tree-order calculations for a single
generation, N = NC will be assumed.

2.2 < σ|v| > for NN̄ → W
+
R W

−
R

Three amplitudes iMZ′ , iMe, iMH have been considered for NN̄ → W+W−, these arising,

respectively, from NN̄
Z′

→ W+W− in the s-channel, NN̄
e→ W+W− in the t-channel, and

NN̄
H→ W+W− in the s-channel. Earlier calculations, with rW ≪ 1 [9], considered a heavy

charged lepton exchange in the t-channel. In this paper, as required by the L-R model, an
ordinary electron is considered to be exchanged.

iMZ′ is calculated from (4) and (6), iMe from (5), and iMH from (3) and (8). One finds
that, in the limit M → 0 and s ≫ M2

W , iMe and iMZ′ cancel in tree-order, as expected.
With a massive M ≫ MW , an extra M -dependent term remains in iMZ′ + iMe. On
calculating

∑ |M|2, it is found that the interference terms between iMH , and iMZ′ + iMe

cancel, and for rW ≪ 1, in the CM frame,

∑

|M|2 =
2g4

r4
W

[

1

t2
E2k2 sin2 θCM +

16

M2(s − M2
H)2

E6

]

. (9)

(E,~k) is the 4-momentum of the N neutrino in the CM frame, and θCM , the angle of
scattering. k has been written for |~k|.

The thermally averaged cross-section times relative velocity is

< σ|v| > = (1/n2
eq)

∫

dπNdπN̄dπW+dπW−(2π4)δ4(pN + pN̄ − pW+ − pW−)

×
∑

|M̄|2e−EN /T e−EN̄ /T . (10)

neq is the equilibrium value of the number density n of the N neutrinos.

neq = gN

[

MT

(2π)

]
3

2

e−M/T . (11)
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gN = 2 for Majorana neutrinos. The measure dπi = gid
3pi/[(2π)32Ei].

∑ |M̄|2 is the spin-
averaged matrix element squared, with symmetry factor 1/2!, arising from the identification
N = NC .

The invariant integral
∫

dπW+dπW−(2π)4δ4(pN +pN̄ −pW+−pW−)
∑ |M̄|2 is calculated

in the CM frame, then transformed to the comoving “lab” frame, in which N, N̄ have
energies EN , EN̄ , respectively, and thermally averaged according to (10). In all calculations,
N neutrinos are non-relativistic, viz. EN = M +k2

N/(2M), k2
N ≪ M2. This is because the

interesting region for decoupling studies of a massive particle has T ≪ M.
The result is

< σ|v| >=
1

2!

g4

64πr4
W

[

T

M3
+

16

M2(4 − r2
H)2

{

1 − 3T (4 + r2
H)

2M(4 − r2
H)

}]

. (12)

rH = MH/M .
The first term arises from Z ′- and e-exchange, and apart from the 1/2! factor, agrees with
the result of [11], where the results of [9] have been considered in the limit s → 4M2.
The second term originates from H-exchange. In the calculation of this term, a further
approximation has been made, viz. 4k2 ≪ |4M2 − M2

H |, i.e., this calculation is reliable
provided MH is not very near in value to 2M . In [9], the H-exchange contribution was
found to be negligible as s → 4M2, because of a factor (s − 4M2) which arises for Dirac
neutrinos. For Majorana neutrinos, this factor is absent, and this term cannot be neglected.
As noted earlier, there is no interference between the H-exchange amplitude and those
arising from Z ′- and e-exchange. In [12], only the first term in (12) was considered, which
is the approximation MH ≫ M .

The processes NN̄ → FF̄ , where F is a relevant fermion, have not been considered here.
For M ≫ MW , the contribution of these processes is small compared to that of NN̄ →
W+W− [9], and their effect on decoupling is overshadowed by the effects of NN̄ → W+W−

and the anomalous reduction of N neutrinos [12].

2.3 Thermally averaged decay width of N neutrinos

The decay width for N → W+ + e− can be calculated from (5). Calculation gives the
spin-averaged matrix element squared in the neutrino rest frame

∑

|M̄|2 = g2

[

1

2
Mp +

M(M − p)Mp

M2
W

]

,

with p = 1
2M(1 − r2

W ) being the momentum of the decay products, resulting in the width

Γe =
g2M

32π
(1 − r2

W )2
(

1 +
1

2r2
W

)

. (13)

In the frame in which the neutrino has energy EN , the width becomes

ΓE
e = (M/EN )Γe. (14)
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The thermally averaged decay width [24, 25] is defined as

Γ̄e = (1/neq)

∫

dπNdπW+dπW−(2π)4δ4(pN − pW+ − pW−)
∑

|M̄|2e−EN /T

= (1/neq)

∫

(gNd3pN/(2π)3)ΓE
e e−EN/T .

Using (13) and (14), one gets

Γ̄e =
g2M

32π
(1 − r2

W )2
(

1 +
1

2r2
W

)

(

1 − 3T

2M

)

. (15)

The calculation has been done in the approximation T ≪ M,k2
N ≪ M2. For M ≫ M2

W ,

Γ̄e =
g2M

64πr2
W

(

1 − 3T

2M

)

. (16)

If the mass of the N neutrino is greater than the ∆+ mass, (7) allows the decay N →
∆+ + e−. The corresponding

∑

|M̄|2 = (1/2)f2(M2 − M2
+),

where M+ is the ∆+ mass. In the rest frame of the neutrino, this decay width comes out
as

Γ+ = (g2/64π)(M2/M2
W )M(1 − r2

+)2, (17)

where r+ = M+/M . There is another Yukawa piece of the Lagrangian

LLRΦ =
∑

i,j

(hijL̄iΦRj + h′
ijL̄iτ2Φ

⋆τ2Rj) + h.c. (18)

The scalar field Φ transforms under the gauge group as (1
2 , 1

2 , 0) and is represented by the
matrix

Φ =

(

φ0 φ′+

φ− φ′0

)

.

Such pieces have been used in different models to break CP and induce baryogenesis through
leptogenesis [4, 5, 17, 18, 19, 20]. If one generation is considered, the coupling constant h
contributes to the electron mass and must be very small. To fit the observed baryon
asymmetry, with N mass in the TeV range, |hij |2 values of the order of 10−10 to 10−13 have
been considered [4, 5]. In this situation, as CP breaking has not been considered here, and
only one generation taken into account, it has not been thought useful to consider N -decays
arising from (18). In any case, it will be found that any enhancement of the decay width
given in (15) and (16) will only strengthen the main conclusion of the paper.
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2.4 Anomalous generation of Majorana neutrinos

The one generation, sphaleron-mediated, fermion number violating transition rate per unit
volume, with |∆L| = 1, |∆B| = 1, for the quantum anomaly, involving the SU(2)R gauge
group, was written, in [12], by extrapolation from the SU(2)L case [26], as

AR = (1.4 × 106)

(

bM7
W

g6T 3

)[

1 −
(

T

zMW

)2
]7/2

× exp







−16πMW

g2T

[

1 −
(

T

zMW

)2
]1/2







. (19)

MW is the zero temperature WR mass. z = TR/MW , where TR is the critical temperature
associated with the breaking of the SU(2)R gauge symmetry. So, z is essentially a quantity
which reflects the uncertainty in the values of the L-R model parameters, while b captures
the uncertainties involved in the extrapolation from the SU(2)L to the SU(2)R case in
addition to those in the estimation of the prefactor of the anomaly driven transition [27].

In [12], the anomalous rate of reduction of N neutrinos was considered, maintaining
a distinction between N and NC . Here, N = NC neutrinos are considered, to maintain
uniformity with the NN̄ → W+W− calculations. This entails an extra factor of 2, as seen
below.

For an anomalous process l, with ∆L = +1, such that

l : i + j + · · · → N + a + b + · · · ,

one writes [12],

Al =

∫

dπNdπadπb · · · dπidπj · · · |Ml|2

×(2π)4δ4(pN + pa + pb + · · · − pi − pj − · · ·)f eq
N fafb · · ·

= Ilneq, (20)

where Il contains the result of the phase space integrations, apart from neq [24, 25], and
i, j, · · · a, b, · · · are all supposed to be in equilibrium.

Taking the view that leptogenesis and baryogenesis are effects of a smaller order, CP-
symmetry is assumed. Then [12], for each process l, there is a ∆L = −1 process

l̄′ : N + a + b + · · · → i + j + · · · ,

with the same |Ml|2. For this process,

Al̄′ =

∫

dπNdπadπb · · · dπidπj · · · |Ml|2

×(2π)4δ4(pN + pa + pb + · · · − pi − pj − · · ·)fNfafb · · ·
= Iln (21)
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The ∆L = +1 processes, generating N neutrinos, add up to

∑

l

Al = neq

∑

l

Il =
1

2
AR exp(−βµL/2),

from [26]. µL = µN is the chemical potential (µe = 0, as electrons are in equilibrium).
The 1/2 factor arises from the assumption [12], that, to a first approximation, the rate
of generation of one member of a lepton doublet may be taken to be the same as that of
the other, near equilibrium (not a bad condition at decoupling when the neutrinos are just
falling out of equilibrium).
Similarly,

∑

l̄′

Al̄′ = n
∑

l

Il =
1

2
AR exp(+βµL/2).

So, for small µN [26],
neq

∑

l Il ≈ 1
2AR(1 − βµN/2),

n
∑

l Il ≈ 1
2AR(1 + βµN/2).

One gets
∑

l

Il = AR/(n + neq),

and the anomalous rate of reduction of N neutrinos per unit volume

AN =
∑

l̄′

Al̄′ −
∑

l

Al =
n − neq

n + neq
AR. (22)

This has an extra factor of 2, compared to [12], because anti-particle processes, which had
to be considered separately there, do not appear here, because of the assumption N = NC .

3 Effect of decay on decoupling

3.1 The Boltzmann equation for N neutrinos

Using the results of the last section, one can write the Boltzmann equation

dn

dt
+ 3Hn = −2 < σ|v| > (n2 − n2

eq) − 2Γ̄e(n − neq) −
n − neq

n + neq
AR, (23)

where the second term on the left gives the effect of expansion, and the three terms on the
right are to be taken from (12), (16), and (22), respectively.
The expression for the Hubble parameter H is

H = 1.66g⋆ 1

2 T 2/MP l. (24)

g⋆ is taken ≈ 100, and MP l = 1.22×1019 GeV. The 2 factor with < σ|v| > appears because
two neutrinos are disappearing in NN̄ → W+W−, considering N = NC . The 2 factor with
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Γ̄e appears because of the two decay channels N → W+ + e− and N → W− + e+.Writing
x = M/T and Y = n/s, where s = g⋆S(2π2/45)T 3, with g⋆S ≈ 100, (23) becomes

dY

dx
= −f(x)(Y 2 − Y 2

eq) − d(x)(Y − Yeq) − g(x)
Y − Yeq

Y + Yeq
. (25)

In (25),

f(x) =

(

1.41 × 1016 GeV

MW

)

(

a

x

)3
[

2x

(1 − r2
H/4)2

− h(rH)

]

, (26)

where a = 1/rW = M/MW and

h(y) =
1

(1 − y2/4)3

[

1 + y2
{

(1 − y2/8)(1 − y2/4) + 5/4
}]

, (27)

d(x) =

(

3.08 × 1015 GeV

MW

)

ax

[

1 − 3

2x

]

, (28)

g(x) =

(

3.06 × 1023 GeV

MW

)

b

a

[

1

u2
− 1

z2

]
7

2

× exp

{

−118.98

[

1

u2
− 1

z2

]
1

2

}

, (29)

with u = a/x = T/MW .
Writing Y = Yeq + ∆, it is noted that, before decoupling, Y is close to Yeq, and ∆′ may

be put equal to zero. Then, (25) may be put in the form

∆ =
−Y ′

eq

f(x)(2Yeq + ∆) + d(x) + g(x)
2Yeq+∆

.

From neq in (11), one gets

Yeq = 2.89 × 10−3x
3

2 e−x, and Y ′
eq ≈ −Yeq,

at decoupling, when it is expected that x = xd ≫ 1. The criterion for decoupling may be
taken as ∆ = c′Yeq, where c′ is of order 1. As in [12], c′ is chosen to be 1.
Then, the condition for decoupling is

3f(xd)Yeq(xd) + d(xd) +
g(xd)

3Yeq(xd)
= 1 (30)

This is the key condition in our analysis of decoupling. Each factor on the lhs of (30) is
positive [28]. So, there is no scope for cancellation between different terms. We will show in
the following subsections that, in fact, the condition can never be satisfied. The argument
proceeds as follows. First, we consider (30), excluding the second (decay) term in the lhs.
We show that there is a value xa, which we obtain numerically below, such that, for x < xa

or x > xa, the lhs is, respectively, greater or less than unity in the absence of decay. We
then check that for x > xa the decay term is much larger than unity so that there is no
value of x (= M/T ) for which eq. (30) is satisfied.

9



3.2 Decoupling in the absence of decay

First, d(xd) is omitted, and the decoupling condition

l(x) = 3f(x)Yeq(x) +
g(x)

3Yeq(x)
= 1 (31)

is solved to give x = xa. xa represents the value of M/T for which decoupling would occur
in the absence of decay.

Yeq gives a factor e−x, and, so, the term with f(x) increases as x decreases. g(x) has
an exponential factor of the form e−Esp/T = e−Kx/a [12, 14, 26, 29, 30], where Esp is the
energy of the sphaleron mode which decays to cause anomalous L generation. The kinematic

constraint on N production, Esp > M, gives K/a > 1 [12], and so g(x)/Yeq ∼ e−(K
a
−1)x,

and, again, increases as x decreases. This means that l(x) > 1 if x < xa. So, x < xa will not
satisfy the decoupling condition (30). Therefore, on the whole, it may be said approximately
[24] that, for x > xa, the annihilation rate plus the anomalous reduction rate is less than
H.

This programme is followed numerically. First, for definiteness, we fix b and z, the two
parameters in the expression for g(x) – see eq. (29) – at the values 1 and 4, respectively
[12]. a is varied from 2-100, for rH

4 = 0, 1, 3, 10 and xa found by solving (31) numerically.

rH=1 rH=3 rH=10

a x a x a x

2 25.79 2 25.06 2 22.30

5 28.49 5 27.74 5 24.89

10 30.54 10 29.77 10 26.86

20 32.60 20 31.81 20 28.83

50 35.32 50 34.52 50 32.18

75 73.77 75 73.77 75 73.77

100 238.83 100 238.83 100 238.83

Table I: x = M/T at decoupling for different choices of a = M/MW and rH = MH/M without the

inclusion of the decay contribution in the Boltzmann equation. MW has been chosen to be 4000 GeV

The results for MW = 4000 GeV are shown in Table I for rH=1,3,10. There is a clear
trend, showing an increase in xa for an increase in a (constant rH), and a decrease in xa

for an increase in rH (constant a). The values for rH=100 and rH=1000, we have checked,
do not differ at all.It is safe to say that xa > 20 for the parameter ranges considered.

We now address the uncertainty regarding the anomalous rate [27]. The uncertainty
is embodied in the parameters b and z appearing in the expression for this rate. The
parameter z = TR/MW is of order unity (z = 3.8 in the SU(2)L case [26]). To gauge the

4
h(rH) assumes its asymptotic value of –2 for rH > 5.
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a=2 a=50

b x b x

103 22.30 103 36.79

102 22.30 102 35.11

10 22.30 10 33.50

1 22.30 1 32.18

10−1 22.30 10−1 31.60

10−2 22.30 10−2 31.47

10−3 22.30 10−3 31.46

Table II: Effect of uncertainty in anomalous rate on the results of Table I

sensitivity of the results on z, a calculation was made with a=50 (to give good weightage to
the anomalous transition factor g(x)) and rH=1. xa, obtained by solving (31), was 42 for
z = 2, 35.6 for z = 3, and reached an asymptotic value of 35.3 for z ≥ 4. For rH=10, xa was
42 for z = 2, 35 for z = 3, and had an asymptotic value of 31.5. The conclusion xa > 20,
of the last paragraph is not disturbed. In [12], the uncertainty in b was taken into account
by varying it through six orders of magnitude about b = 1. We do a similar calculation for
z = 4, rH = 10, MW = 4000 GeV and present the results in Table II. It is clear that even
this large variation of b through six orders of magnitude does not affect the conclusion of
the previous paragraph.

For comparison, the results for MW = 2000 GeV, for the same values of the other
parameters, are shown in Table III.

rH=1 rH=3 rH=10

a x a x a x

2 26.47 2 25.73 2 22.95

5 29.18 5 28.41 5 25.54

10 31.23 10 30.45 10 27.51

20 33.28 20 32.49 20 29.49

50 36.00 50 35.20 50 32.75

75 75.01 75 75.01 75 75.01

100 242.83 100 242.83 100 242.83

Table III: Same as in Table I but for MW = 2000 GeV

The expectation that l(x) – see eq. (31) – decreases below 1, as x increases through xa,
was verified numerically for MW = 4000 GeV, and a = 10,20,50,75, for each of rH=1,10.
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Table IV shows the results for rH = 1,10, and a = 10,50.

rH=1 rH=10

a=10 a=50 a=10 a=50

x l(x) x l(x) x l(x) x l(x)

20 45.23 ×103 30 227.87 20 14.61 ×102 25 13.13 ×103

35 1.09 × 10−2 40 8.70 ×10−3 30 3.67 ×10−2 40 1.51 ×10−4

Table IV: Behavior of l(x) (31) around xa in the absence of decay. MW = 4000 GeV for this Table.

3.3 Effect of decay

From the numerical results of the previous subsection it would be safe to say that for
x < 20, l(x) > 1. Now, if one looks at d(x) (28), it is clear that, for x > 20, d(x) ≫ 1, and,
moreover, as x increases further, d(x) increases. So, there is no possibility of the decoupling
condition (30) being satisfied.

d(x), of course, has a simple physical meaning. In the lhs of (23),

dn

dt
+ 3Hn = Hsx

dY

dx
.

Comparing (23) and (25), d(x) = (2Γ̄e/Hx). If d(x) ≫ 1 for x = xa, with xa ∼ 20, this
means that Γ̄e ≫ H at this point. Considering the physical meaning of xa, it may be
concluded that, although, at temperatures lower than Ta = M/xa, the annihilation rate
plus anomalous reduction rate falls below the expansion rate, the decay rate remains much
faster than the expansion, and this prevents decoupling.

In the absence of decoupling, the fast decay constrains the N neutrino number density
to follow the equilibrium density ∼ e−M/T . There is no out-of-equilibrium decay.

One may check that this conclusion is not an artefact of the approximation M2 ≫ M2
W

in the calculations. Without this approximation, (15) gives the decay rate

Γ̄e =
g2M(a2 − 1)2(a2 + 2)(1 − (3/2x))

64πa4
(32)

so that

d(x) =

(

3.08 × 1015 GeV

MW

)

(a2 − 1)2(a2 + 2)x

a5

[

1 − 3

2x

]

. (33)

Simple calculation shows that if d(x) is to be < 1, for x ∼ 20, then one must have a ∼ 1,
to 1 part in 107 (for MW = 4000 GeV). There is no reason for such fine tuning between N
and W masses.
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If the N decay width is augmented by the ∆+, e− channel, i.e., if M > M+,

d(x) =

(

3.08 × 1015 GeV

MW

)[

(a2 − 1)2(a2 + 2)

a5
+ a(1 − r2

+)2
]

x

[

1 − 3

2x

]

. (34)

In this case, if d(x) is to be < 1 for x ∼ 20, with MW = 4000 GeV, not only must rW ∼ 1,
but, also, r+ ∼ 1, each to 1 part in 107, an unacceptable situation.

Clearly, if the decay width is further augmented by introducing other channels, this will
change Γe, but not the x-dependence of Γ̄e or d(x), so that d(x) < 1 for x ∼ 20 will be an
even remoter possibllity.

d(x) can be decreased by increasing MW . Taking rH = 1, a little calculation shows that
d(x) = 0.999 and l(x) = 0.001 for x = 4.25 and MW = 1.7 × 1016 GeV if a = 2, and for
x = 6.6 and MW = 1.6 × 1017 GeV if a = 10.

This scale of MW agrees with [20] where the decoupling condition was, however, chosen
simply as Γ̄e < H at T = M , Γ̄e having been assigned the value g2T/8π. In this paper, we

have calculated Γe =
g2(M2−M2

W
)2(1+M2/2M2

W
)

32πM3 , and taken the thermal average of (M/EN )Γe

for T < M . We have used a decoupling criterion which includes the effect of annihilations
and anomalous reduction, for a wide range of the parameters rH = MH/M and rW =
MW /M . Also, our method of approximate solution of the Boltzmann equation keeps the
temperature of decoupling open and calculable, e.g., in the previous paragraph it was found
that decoupling occurs for M > 1016, (1017) GeV at T = M/4 (M/6), and not at T = M .

So, the main point which emerges is that for there to be decoupling of massive neutrinos
in the L-R model, it is necessary to consider right-handed gauge boson mass values far above
the physically expected L-R mass scale. Further as M = aMW , the see-saw mechanism
will, then, give values of the ν mass, which will be unacceptably small, when compared to
neutrino oscillation values of ∆m2.

4 Conclusions

It is to be concluded that, in the L-R model, with right-handed neutrino mass greater
than the WR mass, even when the annihilation plus anomalous reduction rate for these
neutrinos has fallen below the expansion rate, the decay remains faster than expansion, and
becomes increasingly faster. So, massive right-handed neutrinos will decay while remaining
in equilibrium.

We find that this is true for a wide range of values of MW /M and MH/M , and also for
a wide allowance of uncertainty in the anomalous rate.

As the equilibrium number density varies as e−M/T , right-handed neutrinos rapidly
dwindle in number once the temperature falls below their mass. The decay products, with
much lower masses, equilibriate immediately. Hence, there is no question of influencing the
present density of the universe, CMBR, and nucleosynthesis or later events, and no mass
bound can be set for right-handed neutrinos in the L-R model, if their mass is greater than
the WR boson mass (apart from an upper bound from unitarity [10, 11]).
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Because there is no out-of-equilibrium decay, the lepton (and baryon) number generation
scenarios, utilising the decay of massive Majorana neutrinos will not work in the L-R model,
if the neutrino mass is greater than the WR boson mass, a result also previously noted in
[20].
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