18 research outputs found

    Design and Development of Sustainable Construction Strategy for Residential Buildings: A Case Study for Composite Climate

    Get PDF
    Developing cities in India like Nagpur are growing exponentially in population due to industrialization. The ever increasing demand of the natural resources leads to depletion of limited resources and also affects local environment in terms of increasing pollution emissions especially carbon emission. With recourse to composite climatic condition (Nagpur, India) the sustainable construction strategy is developed in the present paper. The developed strategy includes conservation of soil, energy, resources, material and water. It provides a systematic approach towards sustainability of building through quantification of energy consumption. Analysis of conventional and non-conventional material and technology on cost, energy consumption and carbon emission parameters helps in highlighting suitable options for sustainable construction. Strategy is validated through a case study of new construction of the residential buildings for enhanced environmental performance. The amount of excavated soil and its reutilization on site is taken into consideration. Locally available sustainable construction materials are compared for material cost, and embodied energy for selection of appropriate construction material. In order to conserve the ground water various options for the low flow devices, roof top rainwater harvesting and gray water recycling and reuse are suggested. Application of sustainable construction strategy to case study building revealed that 97% of natural soil is conserved through backfilling. Estimated carbon emission reduction due to recommended construction materials (sustainable bricks, cement, and steel) with respect to conventional options is of the order of 60%. Recommended water conservation options resulted in 57% reduction in ground water demand.  However suggested sustainable construction strategy options estimated in increase in project cost by 13% whose effect can subsequently be reduced over the design life span computations. The developed strategy can further be applied to the larger residential township areas with varying building types for conserving the natural resources as well as reducing the impact of environmental pollution

    Review of intelligent building construction: A passive solar architecture approach

    No full text
    Due to the increase in living standard and demand, energy conservation has become important in industrialized countries. In view of rational use of energy, the present paper reviews intelligent building construction with the aid of passive solar architecture approach, which makes use of specific building design principles and reduces the artificial energy requirements for achieving indoor thermal comfort. As a climate responsive architecture, building design criteria has been studied with the help of several parameters like geographic location and climatic conditions, building shape, orientation, selection of construction materials, building openings viz. windows, selection of suitable sunshades, etc. All the salient building design parameters are studied and important findings and recommendations are suggested as the outcome of the study. The study in turn is useful for various resource persons involved in the construction activities for designing energy efficient intelligent buildings.Energy conservation Intelligent building Passive solar architecture Climate responsive architecture

    Technological and Sustainable Perception on the Advancements of Prefabrication in Construction Industry

    No full text
    The construction industry has experienced phenomenal growth because of technological advancements in the past couple of decades. Prefabrication constitutes a sizeable share of this industry and is being adopted all over the world. The method of casting construction elements in a controlled environment and assembling them on-site has revolutionised the industry. Research on various aspects of the technology is ongoing around the world, and an impressive number of articles have been published. However, the prefab technology, materials used, and terminology have varied across locations, which may have hindered the method’s wider acceptability. By evaluating technical articles published between 1991 and 2022, this report analyses the present body of knowledge regarding prefab technology, its evolution, sustainability, and stakeholder views. This technology effectively contributes around 40% in time saving, 27% in cost reduction, 30% in reduced carbon emissions, and 84% in on-site wastage reduction. It also increases quality, gives a dependable alternative for meeting mass construction targets, is energy efficient, and provides environmentally conscious options. This paper contributes to the body of knowledge by providing a snapshot of the prefab industry spanning three decades, detailing a wide range of factors affecting the industry

    Performance Evaluation of a Sustainable Prefabricated System Using Small-Scale Experimental Model Technique

    No full text
    The increasing urban population requires rapid housing construction. Rising global temperatures have led to more space cooling options inside buildings. There is a need to design new-age buildings with a sustainable, thermal comfort, and energy-efficiency approach. The present work integrates this approach into the design of prefabricated elements. Locally available co-fired ash, along with other sustainable alternates, are used in developing these elements. This study involves a performance evaluation and feasibility assessment of the proposed prefabricated system. A small-scale model house of one-third size is constructed using these elements for the purpose of functional evaluation. An average temperature variation of approximately 4 °C is observed upon comparison with the fly-ash brick model during the peak summer season. During energy assessment, a 12% and 52% decrease in embodied energy and peak cooling loads were observed. The time study resulted in 20% time savings over the conventional technique. The proposed system also includes a solar photo-voltaic panel, which compensates for 30% of the energy demand and reduces approximately 42% of the energy cost. Thus, the developed prefabricated system is found suitable for non-load bearing as well as functional applications. The performed studies determined the system to be sustainable, lightweight, quick, as well as energy efficient

    Technological and Sustainable Perception on the Advancements of Prefabrication in Construction Industry

    No full text
    The construction industry has experienced phenomenal growth because of technological advancements in the past couple of decades. Prefabrication constitutes a sizeable share of this industry and is being adopted all over the world. The method of casting construction elements in a controlled environment and assembling them on-site has revolutionised the industry. Research on various aspects of the technology is ongoing around the world, and an impressive number of articles have been published. However, the prefab technology, materials used, and terminology have varied across locations, which may have hindered the method’s wider acceptability. By evaluating technical articles published between 1991 and 2022, this report analyses the present body of knowledge regarding prefab technology, its evolution, sustainability, and stakeholder views. This technology effectively contributes around 40% in time saving, 27% in cost reduction, 30% in reduced carbon emissions, and 84% in on-site wastage reduction. It also increases quality, gives a dependable alternative for meeting mass construction targets, is energy efficient, and provides environmentally conscious options. This paper contributes to the body of knowledge by providing a snapshot of the prefab industry spanning three decades, detailing a wide range of factors affecting the industry

    Application of Alkali-Activated Sustainable Materials: A Step towards Net Zero Binder

    No full text
    Economic growth and rapid urbanization have resulted in the increase in demand for infrastructure development. To meet this ever increasing demand, conventional construction materials such as concrete are used, which requires an energy intensive process that in turn impacts the environment adversely. Ordinary Portland Cement, being the dominant binder in the industry, contributes around 8% of worldwide annual carbon emissions, and this is expected to reach around 20% by 2050. Population growth has resulted in the significant increase in agro-industrial waste generation during recent years. Inadequate waste management raises a number of environmental concerns. With the growing economy and rising living standards, global raw material consumption is expected to double by 2060. The reutilization of waste materials will aid in their management, while conserving the available resources. Alkali-activated materials (AAM) have recently been introduced as an eco-friendly alternative to conventional binders with fewer environmental impacts. AAM reduce the need for Ordinary Portland Cement (OPC) by substituting it with supplementary cementitious materials (SCM), and therefore, reducing the amount of subsequent carbon emissions. Alkali activation is a complex chemical process between the precursors (alumino-silicate materials) and their dissolution in the activators. Different materials react to alkali activators in different ways depending on their properties. The current study aims to provide a critical review of potential agro-industrial wastes on the fresh and hardened properties of alkali-activated concrete (AAC). To understand the design and development of AAC, influencing the parameters such as the molarity of NaOH, alkali activators, and the ratio of the activators have been discussed in detail. The curing regime and its effect on the behavior of alkali-activated concrete are mentioned. The different admixtures used to regulate the properties of AAC are highlighted. AAC exhibited optimized embodied energy, operational energy, life cycle cost, CO2 emission, and raw material consumption rates than the conventional concrete did. However, these results varied based on the precursors used in them. This paper focuses on the design and development of AAC, and it should be viewed as an important contribution towards the adoption of AAC in practical applications. The study presents the potential of AAM as a net zero binder in the making of sustainable concrete with enhanced properties

    Development of sustainable alkali-activated bricks using industrial wastes

    No full text
    Brick is one of the majorly used building materials for masonry construction. Unlocking the potential to deliver significant impact against India's current housing and agro-industrial waste challenges is crucial. This can be met by developing sustainable products using industrial wastes. Alkali-activated products are claimed to be sustainable and cost effective, giving rise to Portland cement free products. The paper presents a state-of-the-art review on the development of sustainable bricks by alkali-activation of industrial wastes. Physical and chemical characterisation of industrial wastes are discussed in order to check its feasibility for the development of alkali-activated bricks. The influence of parameters on physico-mechanical and durability related properties are evaluated. Previous studies show that bricks with the appropriate values of molarity, alkali modulus, liquid-binder ratio and water glass-NaOH ratio (5–15 M, 0.15–0.9, 0.2–0.48 and 0.5–2.5 respectively)achieves a compressive strength of 5–60 N/mm 2 . Though considerable research has been carried out, application of industrial wastes in the alkali-activated bricks manufacturing are still limited and some recommendations are suggested. Geopolymeric bricks seems to be the most advantageous as they can incorporate high content of wastes. It signifies the potential use of waste materials to form alkali-activated brick as an alternate sustainable masonry option.authorsversionpublishe

    Utilization of Co-Fired Blended Ash and Chopped Basalt Fiber in the Development of Sustainable Mortar

    No full text
    Excessive consumption of cement in construction materials has resulted in a negative impact on the environment. This leads to the need of finding an alternative binder as a sustainable construction material. Different wastes that are rich in aluminosilicates have proved to be a valuable material for alkali-activated product development, which contains zero cement. Alkali-activated products are claimed to be sustainable and cost-effective. In the present study, alkali-activated reinforced masonry mortar was developed using locally available industrial waste (co-fired blended ash—CBA). Appropriate mortar design is one of the key challenges as connections between two structural elements play a significant role in building construction. The mortar designed with suitable fiber reinforcement shall significantly help to enhance the fresh, mechanical, durability, and dynamic properties. Chopped basalt fibers (CBFs) obtained from basalt rock are one of the eco-efficient fibers applied as a reinforcing material. The present study checked the feasibility of novel industrial waste-co-fired blended ash (CBA) in the development of alkali-activated masonry mortar and reinforced alkali-activated mortar. In view of sustainable construction material design, the study elaborated the application of chopped basalt fibers (CBFs) in alkali-activated mortar design. The mortar cubes were cast and tested for various properties with varying percentages of chopped basalt fibers (0.5%, 1%, and 1.5%). The results suggest that developed mortars were able to achieve higher compressive strength (10–18 MPa) and flexural strength (3–3.5 MPa). Further, based on the properties of developed alkali-activated reinforced mortar, masonry prisms were cast and evaluated for the bond strengths (flexural and shear) of masonry. The optimum properties of alkali-activated mortar were found for the mix design of alkali activator to solid ratio of 0.40 and 0.5% CBF percentage. Application of CBF in CBA alkali-activated reinforced masonry mortar proved to be an efficient construction material with no cement
    corecore