8 research outputs found

    Polydopamine mediated self-cleaning of high-flux pH-responsive isoporous membranes for filtration applications

    Get PDF
    A major challenge in membrane filtration is fouling which reduces the membrane performance. The fouling is mainly due to the adhesion of foulants on the membrane surfaces. In this work, we studied the fouling behavior of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) isoporous membrane and the mussel inspired polydopamine/L-Cysteine isoporous zwitterionic membrane. The polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) isoporous membrane was fabricated via self-assembly and non-solvent induced phase separation.1 Subsequently, the isoporous membrane was modified through a mild mussel-inspired polydopamine (PDA) coating by retaining the isoporous morphology and water flux.2 Furthermore, zwitterionic L-Cysteine was anchored on the PDA layer coated membranes via Michael addition reaction at neutral pH and 50oC. The membranes were thoroughly characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and zeta potential measurements. The contact angle and dynamic scanning calorimetry (DSC) measurements were carried out to examine their hydrophilicity. The pH-responsive behaviour of the modified membrane remains unchanged and the antifouling ability after PDA/L-Cysteine functionalization was improved. The modified and unmodified isoporous membranes were tested using humic acid and natural organic matter contaminated solutions at 0.5 bar feed pressure. References Peinemann, K.-V.; Abetz, V.; Simon, P. F. W. Asymmetric Superstructure Formed in a Block Copolymer via Phase Separation. Nat. Mater. 2007, 6, 992–996. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science. 2007, 318, 426–430

    Novel adsorptive ultrafiltration membranes derived from polyvinyltetrazole-co-polyacrylonitrile for Cu(II) ions removal

    No full text
    Novel adsorptive ultrafiltration membranes based on polyvinyltetrazole-co-polyacrylonitrile polymer were manufactured for an efficient copper removal. [Display omitted] •Polyvinyltetrazole (PVT)-co-PAN based ultrafiltration membranes were fabricated.•PVT segment played a significant role for copper adsorption.•The binding capacity of PVT–PAN membranes for Cu(II) ions exceeded 130mgg−1.•Copper loaded membranes could be regenerated with 0.25mM EDTA solution. Novel adsorptive ultrafiltration membranes were manufactured from synthesized polyvinyltetrazole-co-polyacrylonitrile (PVT-co-PAN) by nonsolvent induced phase separation (NIPS). PVT-co-PAN with various degree of functionalization (DF) was synthesized via a [3+2] cycloaddition reaction at 60°C using a commercial PAN. PVT-co-PAN with varied DF was then explored to prepare adsorptive membranes. The membranes were characterized by surface zeta potential and static water contact angle measurements, scanning electron microscopy as well as atomic force microscopy (AFM) techniques. It was shown that PVT segments contributed to alter the pore size, charge and hydrophilic behavior of the membranes. The membranes became more negatively charged and hydrophilic after addition of PVT segments. The PVT segments in the membranes served as the major binding sites for adsorption of Cu(II) ions from aqueous solution. The maximum adsorption of Cu(II) ions by the membranes in static condition and in a continuous ultrafiltration of 10ppm solution was attained at pH=5. The adsorption data suggest that the Freundlich isotherm model describes well Cu(II) ions adsorption on the membranes from aqueous solution. The adsorption capacity obtained from the Freundlich isotherm model was 44.3mgg−1; this value is higher than other membrane adsorption data reported in the literature. Overall, the membranes fabricated from PVT-co-PAN are attractive for efficient removal of heavy metal ions under the optimized conditions

    CO2-Philic Thin Film Composite Membranes: Synthesis and Characterization of PAN-r-PEGMA Copolymer

    No full text
    In this work, we report the successful fabrication of CO2-philic polymer composite membranes using a polyacrylonitrile-r-poly(ethylene glycol) methyl ether methacrylate (PAN-r-PEGMA) copolymer. The series of PAN-r-PEGMA copolymers with various amounts of PEG content was synthesized by free radical polymerization in presence of AIBN initiator and the obtained copolymers were used for the fabrication of composite membranes. The synthesized copolymers show high molecular weights in the range of 44–56 kDa. We were able to fabricate thin film composite (TFC) membranes by dip coating procedure using PAN-r-PEGMA copolymers and the porous PAN support membrane. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were applied to analyze the surface morphology of the composite membranes. The microscopy analysis reveals the formation of the defect free skin selective layer of PAN-r-PEGMA copolymer over the porous PAN support membrane. Selective layer thickness of the composite membranes was in the range of 1.32–1.42 μm. The resulting composite membrane has CO2 a permeance of 1.37 × 10−1 m3/m2·h·bar and an ideal CO2/N2, selectivity of 65. The TFC membranes showed increasing ideal gas pair selectivities in the order CO2/N2 > CO2/CH4 > CO2/H2. In addition, the fabricated composite membranes were tested for long-term single gas permeation measurement and these membranes have remarkable stability, proving that they are good candidates for CO2 separation

    Polyanionic pH-responsive polystyrene-b-poly(4-vinyl pyridine-N-oxide) isoporous membranes

    No full text
    Recently isoporous block copolymer (BCP) membranes obtained by non-solvent induced phase separation gained a lot of attention due to their highly ordered surface layer, high flux and superior separation properties. These polystyrene-b-poly-4-vinylpyridine (PS-b-P4VP) based membranes showed a strong flux dependence of pH; pores closed at low pH and opened at high pH. The pH-response could now be reversed by a simple post modification; pores are now opening at low pH and closing at high pH. The original membrane was transformed into a polyanionic pH responsive membrane in a one step chemical modification without affecting the isoporous surface morphology. A polystyrene-b-poly-4-vinylpyridine-N-oxide (PS-b-P4VPN-oxide) membrane is obtained by selective oxidation of the PS-b-P4VP membrane. The in situ generated peracid obtained by reacting acetic acid and hydrogen peroxide is employed for oxidation. Surprisingly not only the asymmetric membrane structure with the isoporous skin was retained, but also the mechanical and chemical membrane stability was improved significantly. The modified membranes are insoluble in solvents like DMF, NMP and DMSO. Two kinds of PS-b-P4VP based isoporous membranes are available now with reverse flux response to pH. This opens the door to new interesting charge based fractionations. [Display omitted] •Polyanionic pH-responsive isoporous block copolymer membranes were prepared.•The membranes were synthesized by a chemical post-modification of PS-b-P4VP membranes.•The membrane pores are opening at low pH and closing at high pH.•The post-modification improved the mechanical and chemical stability of the membranes
    corecore