148 research outputs found

    The journal: one year later

    Get PDF
    This article celebrates the first year anniversary of the Journal of Brachial Plexus and Peripheral Nerve Injury

    Rapid recovery of serratus anterior muscle function after microneurolysis of long thoracic nerve injury

    Get PDF
    BACKGROUND: Injury to the long thoracic nerve is a common cause of winging scapula. When the serratus anterior muscle is unable to function, patients often lose the ability to raise their arm overhead on the affected side. METHODS: Serratus anterior function was restored through decompression, neurolysis, and tetanic electrical stimulation of the long thoracic nerve. This included partial release of constricting middle scalene fibers and microneurolysis of epineurium and perineurium of the long thoracic nerve under magnification. Abduction angle was measured on the day before and the day following surgery. RESULTS: In this retrospective study of 13 neurolysis procedures of the long thoracic nerve, abduction is improved by 10% or greater within one day of surgery. The average improvement was 59° (p < 0.00005). Patients had been suffering from winging scapula for 2 months to 12 years. The improvement in abduction is maintained at last follow-up, and winging is also reduced. CONCLUSION: In a notable number of cases, decompression and neurolysis of the long thoracic nerve leads to rapid improvements in winging scapula and the associated limitations on shoulder movement. The duration of the injury and the speed of improvement lead us to conclude that axonal channel defects can potentially exist that do not lead to Wallerian degeneration and yet cause a clear decrease in function

    Surgical correction of unsuccessful derotational humeral osteotomy in obstetric brachial plexus palsy: Evidence of the significance of scapular deformity in the pathophysiology of the medial rotation contracture

    Get PDF
    BACKGROUND: The current method of treatment for persistent internal rotation due to the medial rotation contracture in patients with obstetric brachial plexus injury is humeral derotational osteotomy. While this procedure places the arm in a more functional position, it does not attend to the abnormal glenohumeral joint. Poor positioning of the humeral head secondary to elevation and rotation of the scapula and elongated acromion impingement causes functional limitations which are not addressed by derotation of the humerus. Progressive dislocation, caused by the abnormal positioning and shape of the scapula and clavicle, needs to be treated more directly. METHODS: Four patients with Scapular Hypoplasia, Elevation And Rotation (SHEAR) deformity who had undergone unsuccessful humeral osteotomies to treat internal rotation underwent acromion and clavicular osteotomy, ostectomy of the superomedial border of the scapula and posterior capsulorrhaphy in order to relieve the torsion developed in the acromio-clavicular triangle by persistent asymmetric muscle action and medial rotation contracture. RESULTS: Clinical examination shows significant improvement in the functional movement possible for these four children as assessed by the modified Mallet scoring, definitely improving on what was achieved by humeral osteotomy. CONCLUSION: These results reveal the importance of recognizing the presence of scapular hypoplasia, elevation and rotation deformity before deciding on a treatment plan. The Triangle Tilt procedure aims to relieve the forces acting on the shoulder joint and improve the situation of the humeral head in the glenoid. Improvement in glenohumeral positioning should allow for better functional movements of the shoulder, which was seen in all four patients. These dramatic improvements were only possible once the glenohumeral deformity was directly addressed surgically

    Sources of stochasticity in constitutive and autoregulated gene expression

    Full text link
    Gene expression is inherently noisy as many steps in the read-out of the genetic information are stochastic. To disentangle the effect of different sources of stochasticity in such systems, we consider various models that describe some processes as stochastic and others as deterministic. We review earlier results for unregulated (constitutive) gene expression and present new results for a gene controlled by negative autoregulation with cell growth modeled by linear volume growth.Comment: 7 pages, 6 figures, physica scripta in press (2012

    Identification and Characterization of Novel Perivascular Adventitial Cells in the Whole Mount Mesenteric Branch Artery Using Immunofluorescent Staining and Scanning Confocal Microscopy Imaging

    Get PDF
    A novel perivascular adventitial cell termed, adventitial neuronal somata (ANNIES) expressing the neural cell adhesion molecule (NCAM) and the vasodilator neuropeptide, calcitonin gene-related peptide (CGRP), exists in the adult rat mesenteric branch artery (MBA) in situ. In addition, we have previously shown that ANNIES coexpress CGRP and NCAM. We now show that ANNIES express the neurite growth marker, growth associated protein-43(Gap-43), palladin, and the calcium sensing receptor (CaSR), that senses changes in extracellular Ca(2+) and participates in vasodilator mechanisms. Thus, a previously characterized vasodilator, calcium sensing autocrine/paracrine system, exists in the perivascular adventitia associated with neural-vascular interface. Images of the whole mount MBA segments were analyzed under scanning confocal microscopy. Confocal analysis showed that the Gap-43, CaSR, and palladin were present in ANNIES about 37 ± 4%, 94 ± 6%, and 80 ± 10% respectively, comparable to CGRP (100%). Immunoblots from MBA confirmed the presence of Gap-43 (48 kD), NCAM (120 and 140 kD), and palladin (90–92 and 140 kD). In summary, CGRP, and NCAM-containing neural cells in the perivascular adventitia also express palladin and CaSR, and coexpress Gap-43 which may participate in response to stress/injury and vasodilator mechanisms as part of a perivascular sensory neural network
    corecore