917 research outputs found

    Hydraulic and Hydrologic Model Calibration and Validation for an Earthquake-prone Three-Waters Network

    Get PDF
    This paper summarises the three-waters network (water, wastewater, storm water) model calibration and validation work undertaken in Christchurch after the devastating 2010–2011 earthquakes. The paper outlines some unusual and unique challenges during model calibration due to continual earthquakes in the region and the post-earthquake rebuild work. In case of water supply network model, the validation peak summer date was chosen carefully so that earthquake-related damage and associated rebuild works would have minimal impact on the captured data. The wastewater network was damaged significantly due to the earthquakes. Wastewater flow data were influenced by earthquake damage and post-earthquake major construction activities. Christchurch’s storm water network faced a number of changes – changes in topography, ground levels, river channels and liquefaction – due to the earthquakes. Ongoing model maintenance and updating was a big challenge during model calibration, and an effective collaboration among various teams – GIS, construction contractors, network operations and survey – was important for data collection, data interpretation, model calibration and validation work

    Efficiency Concepts and Models that Evaluates the Strength of Concretes Containing Different Supplementary Cementitious Materials

    Get PDF
    The usage of Supplementary Cementitious Materials (SCM) is very much acknowledged due to the several improvements possible in the concrete composites, and because of the general economy. Research work till date suggests that utilization of SCMs enhance a significant number of the performance characteristics of the hardened concrete. The idea of efficiency can be utilized for comparing the relative performance of different pozzolans when incorporated into concrete. The efficiency concept, which was initially developed for fly ash, can be effortlessly connected to other advantageous s as well, such as silica fume, slag and natural pozzolans. A quantitative understanding of the efficiency of SCMs as a mineral admixture in concrete is essential for its effective utilization. The paper reviews the literature pertaining to the different efficiency concepts and models present to date that evaluates the strength of concretes containing different SCMs. This short survey demonstrates that there is a need for a superior comprehension of the SCMs in concrete for its powerful usage. Also, it is an effort directed towards a specific understanding of the efficiency of SCMs in concrete

    Constraining a spatially dependent rotation of the Cosmic Microwave Background Polarization

    Full text link
    Following Kamionkowski (2008), a quadratic estimator of the rotation of the plane of polarization of the CMB is constructed. This statistic can estimate a spatially varying rotation angle. We use this estimator to quantify the prospects of detecting such a rotation field with forthcoming experiments. For PLANCK and CMBPol we find that the estimator containing the product of the E and B components of the polarization field is the most sensitive. The variance of this EB estimator, N(L) is roughly independent of the multipole L, and is only weakly dependent on the instrumental beam. For FWHM of the beam size ~ 5'-50', and instrument noise $\Delta_p ~ 5-50 uK-arcmin, the scaling of variance N(L) can be fitted by a power law N(L)=3.3 x 10^{-7} \Delta^2_p (FWHM)^{1.3} sq-deg. For small instrumental noise \Delta_p \leq 5 uK-arcmin, the lensing B-modes become important, saturating the variance to ~10^{-6} sq-deg even for an ideal experiment. Upcoming experiments like PLANCK will be able to detect a power spectrum of the rotation angle, C^{\alpha \alpha}(L), as small as 0.01 sq-deg, while futuristic experiment like CMBPol will be able to detect rotation angle power spectrum as small as 2.5 x 10^{-5} sq-deg. We discuss the implications of such constraints, both for the various physical effects that can rotate the polarization as photons travel from the last scattering surface as well as for constraints on instrumental systematics that can also lead to a spurious rotation signal. Rotation of the CMB polarization generates B-modes which will act as contamination for the primordial B-modes detection. We discuss an application of our estimator to de-rotate the CMB to increase the sensitivity for the primordial B-modes.Comment: 11 pages, 5 figure

    Tensor Recovery in High-Dimensional Ising Models

    Full text link
    The kk-tensor Ising model is an exponential family on a pp-dimensional binary hypercube for modeling dependent binary data, where the sufficient statistic consists of all kk-fold products of the observations, and the parameter is an unknown kk-fold tensor, designed to capture higher-order interactions between the binary variables. In this paper, we describe an approach based on a penalization technique that helps us recover the signed support of the tensor parameter with high probability, assuming that no entry of the true tensor is too close to zero. The method is based on an 1\ell_1-regularized node-wise logistic regression, that recovers the signed neighborhood of each node with high probability. Our analysis is carried out in the high-dimensional regime, that allows the dimension pp of the Ising model, as well as the interaction factor kk to potentially grow to \infty with the sample size nn. We show that if the minimum interaction strength is not too small, then consistent recovery of the entire signed support is possible if one takes n=Ω((k!)8d3log(p1k1))n = \Omega((k!)^8 d^3 \log \binom{p-1}{k-1}) samples, where dd denotes the maximum degree of the hypernetwork in question. Our results are validated in two simulation settings, and applied on a real neurobiological dataset consisting of multi-array electro-physiological recordings from the mouse visual cortex, to model higher-order interactions between the brain regions.Comment: 28 pages, 7 figure
    corecore