42 research outputs found

    Classification of microarray data using gene networks

    Get PDF
    BACKGROUND: Microarrays have become extremely useful for analysing genetic phenomena, but establishing a relation between microarray analysis results (typically a list of genes) and their biological significance is often difficult. Currently, the standard approach is to map a posteriori the results onto gene networks in order to elucidate the functions perturbed at the level of pathways. However, integrating a priori knowledge of the gene networks could help in the statistical analysis of gene expression data and in their biological interpretation. RESULTS: We propose a method to integrate a priori the knowledge of a gene network in the analysis of gene expression data. The approach is based on the spectral decomposition of gene expression profiles with respect to the eigenfunctions of the graph, resulting in an attenuation of the high-frequency components of the expression profiles with respect to the topology of the graph. We show how to derive unsupervised and supervised classification algorithms of expression profiles, resulting in classifiers with biological relevance. We illustrate the method with the analysis of a set of expression profiles from irradiated and non-irradiated yeast strains. CONCLUSION: Including a priori knowledge of a gene network for the analysis of gene expression data leads to good classification performance and improved interpretability of the results

    MicroRNA-Integrated and Network-Embedded Gene Selection with Diffusion Distance

    Get PDF
    Gene network information has been used to improve gene selection in microarray-based studies by selecting marker genes based both on their expression and the coordinate expression of genes within their gene network under a given condition. Here we propose a new network-embedded gene selection model. In this model, we first address the limitations of microarray data. Microarray data, although widely used for gene selection, measures only mRNA abundance, which does not always reflect the ultimate gene phenotype, since it does not account for post-transcriptional effects. To overcome this important (critical in certain cases) but ignored-in-almost-all-existing-studies limitation, we design a new strategy to integrate together microarray data with the information of microRNA, the major post-transcriptional regulatory factor. We also handle the challenges led by gene collaboration mechanism. To incorporate the biological facts that genes without direct interactions may work closely due to signal transduction and that two genes may be functionally connected through multi paths, we adopt the concept of diffusion distance. This concept permits us to simulate biological signal propagation and therefore to estimate the collaboration probability for all gene pairs, directly or indirectly-connected, according to multi paths connecting them. We demonstrate, using type 2 diabetes (DM2) as an example, that the proposed strategies can enhance the identification of functional gene partners, which is the key issue in a network-embedded gene selection model. More importantly, we show that our gene selection model outperforms related ones. Genes selected by our model 1) have improved classification capability; 2) agree with biological evidence of DM2-association; and 3) are involved in many well-known DM2-associated pathways

    Investigating the effect of paralogs on microarray gene-set analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to interpret the results obtained from a microarray experiment, researchers often shift focus from analysis of individual differentially expressed genes to analyses of sets of genes. These gene-set analysis (GSA) methods use previously accumulated biological knowledge to group genes into sets and then aim to rank these gene sets in a way that reflects their relative importance in the experimental situation in question. We suspect that the presence of paralogs affects the ability of GSA methods to accurately identify the most important sets of genes for subsequent research.</p> <p>Results</p> <p>We show that paralogs, which typically have high sequence identity and similar molecular functions, also exhibit high correlation in their expression patterns. We investigate this correlation as a potential confounding factor common to current GSA methods using Indygene <url>http://www.cbio.uct.ac.za/indygene</url>, a web tool that reduces a supplied list of genes so that it includes no pairwise paralogy relationships above a specified sequence similarity threshold. We use the tool to reanalyse previously published microarray datasets and determine the potential utility of accounting for the presence of paralogs.</p> <p>Conclusions</p> <p>The Indygene tool efficiently removes paralogy relationships from a given dataset and we found that such a reduction, performed prior to GSA, has the ability to generate significantly different results that often represent novel and plausible biological hypotheses. This was demonstrated for three different GSA approaches when applied to the reanalysis of previously published microarray datasets and suggests that the redundancy and non-independence of paralogs is an important consideration when dealing with GSA methodologies.</p
    corecore