53 research outputs found
Thermally Charged MHD Bi-Phase Flow Coatings with Non-Newtonian Nanofluid and Hafnium Particles along Slippery Walls
The present study is about the pressure-driven heated bi-phase flow in two slippery walls. The non-Newtonian couple stress fluid is suspended with spherically homogenous metallic particles. The magnetic susceptibility of Hafnium allures is taken into account. The rough surface of the wall is tackled by lubrication effects. The nonlinear coupled partial differential equations along with the associated boundary conditions are first reduced into a set of ordinary differential equations by using appropriate transformations and then numerical results were obtained by engaging the blend of Runge–Kutta and shooting techniques. The sway of physical quantities are examined graphically. An excellent agreement within graphical illustration and numerical results is achieved
Recent Trends in Coatings and Thin Film: Modeling and Application
This special issue took this opportunity to invite researchers to contribute their original research work and review articles to this Special Issue on “Recent Trends in Coatings and Thin Film: Modeling and Application” to be published in Coatings. The goal of this Special Issue was to address challenges and current issues that either advance the state-of-the-art of experimental, numerical, and theoretical methodologies, or extends the bounds of existing methodologies to new contributions that are related to coatings and thin film containing whichever, magnetic, multiphase, material science, nanotechnology, surfaces, interfaces, and mechanical sensing properties. In response to the call for papers, a total of 58 papers were submitted for possible publication. After comprehensive peer review, only 27 papers qualified for acceptance for final publication. The rest of 31 papers could not be accommodated. The submissions may have been technically correct, but were not considered appropriate for the scope of this special issue. The authors are from 17 geographically distributed countries, such as China, Spain, Romania, Turkey, Saudi Arabia, Pakistan, Malaysia, Abu Dhabi, UAE, Vietnam, Korea, Taiwan, Thailand, Lebanon, Egypt, India, and Kuwait, etc. This reflects the great impact of the proposed topic and the effective organization of the guest editorial team of this Special Issue
Special Issue on Recent Developments of Nanofluids
Recent advances in nanotechnology have allowed the development of a new category of fluids termed nanofluids. [...
Special Issue on Symmetry and Fluid Mechanics
This Special Issue invited researchers to contribute their original research work and review articles on “Symmetry and Fluid Mechanics” that either advances the state-of-the-art mathematical methods through theoretical or experimental studies or extends the bounds of existing methodologies with new contributions related to the symmetry, asymmetry, and lie symmetries of differential equations proposed as mathematical models in fluid mechanics, thereby addressing current challenges. In response to the call for papers, a total of 42 papers were submitted for possible publication. After comprehensive peer review, only 25 papers qualified for acceptance for final publication. The rest of the papers could not be accommodated. The submissions may have been technically correct but were not considered appropriate for the scope of this Special Issue. The authors are from geographically distributed countries such as the USA, Australia, China, Saudi Arabia, Iran, Pakistan, Malaysia, Abu Dhabi, UAE, South Africa, and Vietnam. This reflects the great impact of the proposed topic and the effective organization of the guest editorial team of this Special Issue
Recent Developments of Nanofluids
Over the past two decades, there has been increased attention in the research of nanofluid due to its widely expanded domain in many industrial and technological applications. Major advances in the modeling of key topics such as nanofluid, MHD, heat transfer, convection, porous media, Newtonian/non-Newtonian fluids have been made and finally published in the special issue on recent developments in nanofluids for Applied Sciences. The present attempt is to edit the special issue in a book form. Although, this book is not a formal textbook even than it will definitely be useful for research students and university teachers in overcoming the difficulties occurring in the said topic while dealing with the nonlinear governing equations. On one side the real world problems in mathematics, physics, biomechanics, engineering and other disciplines of sciences are mostly described by the set of nonlinear equations whereas on the other hand, it is often more difficult to get an analytic solution or even a numerical one. This book has successfully handled this challenging job with latest techniques. In addition the findings of the simulation are logically realistic and meet the standard of sufficient scientific value
Electrohydrodynamic Nanofluid Hydrothermal Treatment in an Enclosure with Sinusoidal Upper Wall
The influence of non-uniform electric filed on Fe3O4-Ethylene glycol nanofluid hydrothermal treatment in an enclosure with sinusoidal upper and moving lower walls is investigated in this study. Control Volume based Finite Element Method (CVFEM) is utilized to simulate in the presented model. Numerical investigation are conducted for the sundry parameters such as Reynolds number; nanoparticle volume fraction and supplied. Results show that supplied voltage can change the flow shape. Coulomb force causes isotherms denser near the moving wall. Heat transfer rises with augment of supplied voltage and Reynolds number. Effect of electric filed on heat transfer is more pronounced at low Reynolds number. Finally, a comparison with the existing literature is also made
A study of heat transfer in power law nanofluid
The purpose of this paper is to study the effects of nanoparticles on mixed
convection flow of power law fluid. The shear thinning fluid is considered
as base fluid. The nanoparticles of copper for nanofluid are taken into
account. To analysis the flow and temperature behavior, various mass
concentrations of polyvinyl alcohol in water, different sizes and
concentrations of nanoparticles are used. The effects of nanoparticle
concentrations on shear stress, heat flux and thermal resistance are also
presented
- …