7 research outputs found

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Nephrocalcinosis in very low birth weight infants

    No full text
    To determine the incidence and risk factors of nephrocalcinosis in preterm infants, we studied in a prospectively 64 preterm infants of birth weight :5 1500 g from February 2006 to November 2007. Data were collected on gestation, birth weight, gender and family history of renal calculi, respiratory support, and use of nephrotoxic drugs. The parameters of mineral meta-bolism were assessed in blood and spot urine samples at the end of 2 nd and 4 th weeks of age. Forty-nine babies completed the study, and nephrocalcinosis was observed in 13 (26.5%) babies and was bilateral in 7 (14.3%) infants. The mean age of diagnosis of nephrocalcinosis was 52.58 days (range 30-123 days). Gestational age, birth weight, and sex were not significantly associated with increased risk of nephrocalcinosis. The mean duration of ventilation was significantly less in babies with than without nephrocalcinosis (P= 0.020), and the mean levels of urine calcium and phosphate at 4 weeks of age, respectively (P= 0.013, P= 0.048). There were also significant diffe-rences in urine calcium/creatinine ratio (P= 0.001), mean plasma levels of calcium at 2 weeks of age (P= 0.047) and plasma levels of phosphate at 4 weeks of age (P= 0.016) between babies with and without nephrocalcinosis. Using logistic regression analysis, family history of renal stone (P= 0.002) and urine calcium/creatinine ratio (P= 0.011) were significant predictors of nephrocalci-nosis. However, there were no significant differences in the length of stay in the intensive care unit, duration of total parenteral nutrition, and duration and cumulative doses of nephrotoxic drugs between these two groups. We conclude that the incidence of nephrocalcinosis was similar in our population to the previous studies. Family history of renal stone and urine calcium/ creatinine ratio are the major risk factors of nephrocalcinosis in very low birth weight neonates

    Cigarette Smoking in the HIV-Infected Population

    No full text
    As mortality due to AIDS-related causes has decreased with the use of antiretroviral therapy, there has been a rise in deaths related to non–AIDS-defining illnesses. Given the exceedingly high prevalence of cigarette smoking among individuals living with HIV infection, tobacco has been implicated as a major contributor to this paradigm shift. Evidence suggests that smoking-related illnesses, such as cardiovascular disease, respiratory illnesses, and certain malignancies, contribute substantially to morbidity and mortality among HIV-infected persons. In this review, we summarize the adverse health consequences of smoking relevant to HIV-infected individuals and discuss smoking cessation in this unique population, including a discussion of barriers to quitting and a review of studies that have examined smoking cessation interventions

    Respiratory Symptoms, and Macrophage Proteomics among HIV-Infected Smokers

    No full text
    Background. HIV-infected subjects have an increased incidence of pulmonary emphysema. There are known gender differences in COPD phenotypic expression and diagnosis, but this is not well characterized in lung disease related to HIV. We analyzed a group at risk for the development of COPD (HIV-infected smokers) to determine gender differences in pulmonary symptoms, pulmonary function tests, and HRCT appearances. Methods. This was a cross-sectional, baseline analysis of a prospective study performed between 2006 and 2010. We performed symptomatic, pulmonary function, and computed tomography assessments in 243 HIVinfected smokers. In a subset bronchoalveolar lavage was performed with proteomic analysis of their alveolar macrophages. Results. The majority of the participants were male 213 (87.6%). There was significantly higher percentage of cough and phlegm production in males. There was also a lower FEV1 and a higher RV in males than females. Proteomic analysis revealed 29 proteins with at least a 2-fold higher expression in males and 13 identified proteins that were higher in females. Conclusions. In this group of HIV-infected smokers, airway symptoms and pulmonary function test abnormalities were higher in men than women. These gender differences may be due to differential expression of certain proteins in this group

    Gender Differences in Pulmonary Function, Respiratory Symptoms, and Macrophage Proteomics among HIV-Infected Smokers

    Get PDF
    Background. HIV-infected subjects have an increased incidence of pulmonary emphysema. There are known gender differences in COPD phenotypic expression and diagnosis, but this is not well characterized in lung disease related to HIV. We analyzed a group at risk for the development of COPD (HIV-infected smokers) to determine gender differences in pulmonary symptoms, pulmonary function tests, and HRCT appearances. Methods. This was a cross-sectional, baseline analysis of a prospective study performed between 2006 and 2010. We performed symptomatic, pulmonary function, and computed tomography assessments in 243 HIV-infected smokers. In a subset bronchoalveolar lavage was performed with proteomic analysis of their alveolar macrophages. Results. The majority of the participants were male 213 (87.6%). There was significantly higher percentage of cough and phlegm production in males. There was also a lower FEV1 and a higher RV in males than females. Proteomic analysis revealed 29 proteins with at least a 2-fold higher expression in males and 13 identified proteins that were higher in females. Conclusions. In this group of HIV-infected smokers, airway symptoms and pulmonary function test abnormalities were higher in men than women. These gender differences may be due to differential expression of certain proteins in this group

    A micropillar array-based microfluidic chip for label-free separation of circulating tumor cells: The best micropillar geometry?

    Get PDF
    Introduction: The information derived from the number and characteristics of circulating tumor cells (CTCs), is crucial to ensure appropriate cancer treatment monitoring. Currently, diverse microfluidic platforms have been developed for isolating CTCs from blood, but it remains a challenge to develop a low-cost, practical, and efficient strategy. Objectives: This study aimed to isolate CTCs from the blood of cancer patients via introducing a new and efficient micropillar array-based microfluidic chip (MPA-Chip), as well as providing prognostic information and monitoring the treatment efficacy in cancer patients. Methods: We fabricated a microfluidic chip (MPA-Chip) containing arrays of micropillars with different geometries (lozenge, rectangle, circle, and triangle). We conducted numerical simulations to compare velocity and pressure profiles inside the micropillar arrays. Also, we experimentally evaluated the capture efficiency and purity of the geometries using breast and prostate cancer cell lines as well as a blood sample. Moreover, the device’s performance was validated on 12 patients with breast cancer (BC) in different states. Results: The lozenge geometry was selected as the most effective and optimized micropillar design for CTCs isolation, providing high capture efficiency (>85 %), purity (>90 %), and viability (97 %). Furthermore, the lozenge MPA-chip was successfully validated by the detection of CTCs from 12 breast cancer (BC) patients, with non-metastatic (median number of 6 CTCs) and metastatic (median number of 25 CTCs) diseases, showing different prognoses. Also, increasing the chemotherapy period resulted in a decrease in the number of captured CTCs from 23 to 7 for the metastatic patient. The MPA-Chip size was only 0.25 cm2 and the throughput of a single chip was 0.5 ml/h, which can be increased by multiple MPA-Chips in parallel. Conclusion: The lozenge MPA-Chip presented a novel micropillar geometry for on-chip CTC isolation, detection, and staining, and in the future, the possibilities can be extended to the culture of the CTCs

    Tobacco Use and Cessation Among Women: Research and Treatment-Related Issues

    No full text
    The prevalence of tobacco use in women has increased over the past century. This has resulted in dramatic increases in smoking-related lung diseases, such as chronic obstructive pulmonary disease (COPD) and lung cancer. There is growing literature suggesting that women may be more susceptible than men to the effects of tobacco and to the development of COPD. Women may also have specific barriers that interfere with smoking cessation. This article addresses possible differences in lung function decline and nicotine metabolism in women compared to men. Differences in COPD between the sexes are discussed. Finally, barriers to smoking cessation in women are presented
    corecore