3 research outputs found

    Modulation of Plant Defense System in Response to Microbial Interactions

    Get PDF
    © Copyright © 2020 Nishad, Ahmed, Rahman and Kareem. At different stages throughout their life cycle, plants often encounter several pathogenic microbes that challenge plant growth and development. The sophisticated innate plant immune system prevents the growth of harmful microbes via two interconnected defense strategies based on pathogen perception. These strategies involve microbe-associated molecular pattern-triggered immunity and microbial effector-triggered immunity. Both these immune responses induce several defense mechanisms for restricting pathogen attack to protect against pathogens and terminate their growth. Plants often develop immune memory after an exposure to pathogens, leading to systemic acquired resistance. Unlike that with harmful microbes, plants make friendly interactions with beneficial microbes for boosting their plant immune system. A spike in recent publications has further improved our understanding of the immune responses in plants as triggered by interactions with microbes. The present study reviews our current understanding of how plant–microbe interactions can activate the sophisticated plant immune system at the molecular level. We further discuss how plant-microbe interaction boost the immune system of plants by demonstrating the examples of Mycorrhizal and Rhizobial association and how these plant-microbe interactions can be exploited to engineer disease resistance and crop improvement.This study was supported by GSRA (Grant GSRA2-1-0608-14021) from the Qatar National Research Fund (a member of Qatar foundation)

    Enhancement of the reproductive potential of Mallada boninensis Okamoto (Neuroptera: Chrysopidae), a predator of red spider mite infesting tea: An evaluation of artificial diets

    No full text
    Green lacewing Mallada boninensis is an important predator of various soft-bodied arthropods, including red spider mites in tea. Efforts were made to develop mass rearing technology for this predator in a cost effective manner. Three combinations of artificial diets (Protinex (AD1), egg yolk (AD2) and royal jelly (AD3) based) were evaluated in comparison with standard diet (Protinex + Honey). All the tested diets influenced the egg-laying capacity of M. boninensis. The egg yolk-based diet resulted in more egg production than the other two diets. Survival of all life stages of M. boninensis was also observed on each diet and no significant difference was noticed. Results revealed that the egg yolk-based diet is the best of the three diet combinations tested in view of high fecundity and survival rate of M. boninensis
    corecore