71 research outputs found

    Experimental and numerical studies of terahertz surface waves on a thin metamaterial film

    Full text link
    We present experimental and numerical studies of localized terahertz surface waves on a subwavelength-thick metamaterial film consisting of in-plane split-ring resonators. A simple and intuitive model is derived that describes the propagation of surface waves as guided modes in a waveguide filled with a Lorentz-like medium. The effective medium model allows to deduce the dispersion relation of the surface waves in excellent agreement with the numerical data obtained from 3-D full-wave calculations. Both the accuracy of the analytical model and the numerical calculations are confirmed by spectroscopic terahertz time domain measurements.Comment: 3 pages, 3 figure

    Gradient Index Metamaterial Based on Slot Elements

    Full text link
    We present a gradient-index (GRIN) metamaterial based on an array of annular slots. The structure allows a large variation of the effective refractive index under normal-to-plane incidence and thus enables the construction of GRIN devices consisting of only a small number of functional layers. Using full-wave simulations, we demonstrate the annular slot concept by means of a 3-unit-cell thin GRIN lens for the terahertz (THz) range. In the presented realizations, we achieved an index contrast of Delta n = 1.5 resulting in a highly refractive lens suitable for focusing THz radiation to a spot size smaller than the wavelength.Comment: 4 pages, 5 figure

    In-Plane Focusing of Terahertz Surface Waves on a Gradient Index Metamaterial Film

    Full text link
    We designed and implemented a gradient index metasurface for the in-plane focusing of confined terahertz surface waves. We measured the spatial propagation of the surface waves by two-dimensional mapping of the complex electric field using a terahertz near-field spectroscope. The surface waves were focused to a diameter of 500 \micro m after a focal length of approx. 2 mm. In the focus, we measured a field amplitude enhancement of a factor of 3.Comment: 6 pages, 4 figure

    Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range

    Full text link
    We present a metamaterial-based terahertz (THz) sensor for thickness measurements of subwavelength-thin materials and refractometry of liquids and liquid mixtures. The sensor operates in reflection geometry and exploits the frequency shift of a sharp Fano resonance minimum in the presence of dielectric materials. We obtained a minimum thickness resolution of 12.5 nm (1/16000 times the wavelength of the THz radiation) and a refractive index sensitivity of 0.43 THz per refractive index unit. We support the experimental results by an analytical model that describes the dependence of the resonance frequency on the sample material thickness and the refractive index.Comment: 10 pages, 5 figure

    Modification of spintronic terahertz emitter performance through defect engineering

    Full text link
    Spintronic ferromagnetic/non-magnetic heterostructures are novel sources for the generation of THz radiation based on spin-to-charge conversion in the layers. The key technological and scientific challenge of THz spintronic emitters is to increase their intensity and frequency bandwidth. Our work reveals the factors to engineer spintronic Terahertz generation by introducing the scattering lifetime and the interface transmission for spin polarized, non-equilibrium electrons. We clarify the influence of the electron-defect scattering lifetime on the spectral shape and the interface transmission on the THz amplitude, and how this is linked to structural defects of bilayer emitters. The results of our study define a roadmap of the properties of emitted as well as detected THz-pulse shapes and spectra that is essential for future applications of metallic spintronic THz emitters.Comment: 33 pages, 13 figure

    Highly Selective Terahertz Bandpass Filters Based on Trapped Mode Excitation

    Full text link
    We present two types of metamaterial-based spectral bandpass filters for the terahertz (THz) frequency range. The metamaterials are specifically designed to operate for waves at normal incidence and to be independent of the field polarization. The functional structures are embedded in films of benzocyclobutene (BCB) resulting in large-area, free-standing and flexible membranes with low intrinsic loss. The proposed filters are investigated by THz time-domain spectroscopy and show a pronounced transmission peak with over 80]% amplitude transmission in the passband and a transmission rejection down to the noise level in the stopbands. The measurements are supported by numerical simulations which evidence that the high transmission response is related to the excitation of trapped modes.Comment: 6 pages, 4 figure

    Optical design of reflectionless complex media by finite embedded coordinate transformations

    Full text link
    Transformation optics offers an unconventional approach to the control of electromagnetic fields. A transformation optical structure is designed by first applying a form-invariant coordinate transform to Maxwell's equations, in which part of free space is distorted in some desired manner. The coordinate transformation is then applied to the permittivity and permeability tensors to yield the specification for a complex medium with desired functionality. The transformation optical structures proposed to date, such as electromagnetic "invisibility" cloaks and concentrators, are inherently reflectionless and leave the transmitted wave undisturbed. Here we expand the class of transformation optical structures by introducing finite, embedded coordinate transformations, which allow the electromagnetic waves to be steered or focused. We apply the method to the design of several devices, including a parallel beam shifter and a beam splitter, both of which exhibit unusual electromagnetic behavior as confirmed by 2D full-wave simulations. The devices are designed to be reflectionless, in accordance with a straightforward topological criterion.Comment: submitted to the journal on Sep 10 2007, abstract changed to make it more accessible, keywords adde
    corecore