2 research outputs found
Dysregulated Expression of MiR-19b, MiR-25, MiR-17, WT1, and CEBPA in Patients with Acute Myeloid Leukemia and Association with Graft versus Host Disease after Hematopoietic Stem Cell Transplantation
Objectives Acute myeloid leukemia (AML) is a blood malignancy characterized by the proliferation of aberrant cells in the bone marrow and blood that interfere with normal blood cells. We have investigated whether changes in the level of micro-ribonucleic acid (miR)-19b, miR-17, and miR-25, Wilms' tumor (WT1), and CCAAT enhancer-binding protein α (CEBPA) genes expression affect disease prognosis and clinical outcome in AML patients.
Materials and Methods The expression level of miR-19-b, miR-17, and miR-25, as well as WT1 and CEBPA genes in a group of patients and controls as well as different risk groups (high, intermediate, and favorite risk), M3 versus non-M3, and graft-versus-host disease (GvHD) versus non-GvHD patients were assessed using a quantitative SYBR Green real-time polymerase chain reaction method.
Results When compared with the baseline level at the period of diagnosis before chemotherapy, the expression of miR-19b and miR-17 in AML patients increased significantly after chemotherapy. The level of miR-19b and miR-25 expression in AML patients with M3 and non-M3 French–American–British subgroups differ significantly. MiR-19b and miR-25 expression was elevated in GvHD patients, while miR-19b and miR-25 expression was somewhat decreased in GvHD patients compared with non-GvHD patients, albeit the difference was not statistically significant. Also, patients with different cytogenetic aberrations had similar levels of miR-19-b and miR-25 expression.
Conclusion MiR-19b, miR-17, and miR-25 are aberrantly expressed in AML patients' peripheral blood leukocytes, which may play a role in the development of acute GvHD following hematopoietic stem cell transplantation
Harnessing self-assembling peptide nanofibers to prime robust tumor-specific CD8 T cell responses in mice
Induction of tumor-specific CD8 + T cell responses is known as a major challenge for cancer vaccine development; here we presented a strategy to improve peptide nanofibers-mounted antitumor immune responses. To this end, peptide nanofibers bearing class I (Kb)‐restricted epitope (Epi-Nano) were formulated with polyethylene imine backbone (Epi-Nano-PEI), and characterized using morphological and physicochemical characterization techniques. Nanofibers were studied in terms of their uptake by antigen-presenting cells (APCs), antigen cross-presentation capacity, and cytotoxic activity. Furthermore, nanofibers were assessed by their potency to induce NLRP3 inflammasome-related cytokines and factors. Finally, the ability of nanofibers to induce tumor-specific CD8 T cells and tumor protection were investigated in tumor-bearing mice. The formulation of Epi-Nano with PEI led to the formation of short strand nanofibers with a positive surface charge, a low critical aggregation concentration (CAC), and an increased resistance to proteolytic degradation. Epi-Nano-PEI was significantly taken up more efficiently by antigen-presenting cells (APCs), and was more potent in cross-presentation when compared to Epi-Nano. Moreover, Epi-Nano-PEI, in comparison to Epi-Nano, efficiently up-regulated the expression of NLRP3, caspase-1, IL-1b, IL18 and IL-6. Cell viability analysis showed that formulation of PEI with Epi-Nano not only abolished its cytotoxic activity, but surprisingly induced macrophage proliferation. Furthermore, it demonstrated that Epi-Nano-PEI triggered robust antigen-specific CD8+ T cell responses, and induced maximum antitumor response (tumor growth inhibition and prolonged survival) in tumor-bearing mice that were significantly higher compared to Epi-Nano. Taken together, the formulation of Epi-Nano with PEI is suggested as a promising strategy to improve nanofibers-mounted antitumor immune response