8 research outputs found

    E-transportation: the role of embedded systems in electric energy transfer from grid to vehicle

    Get PDF
    Electric vehicles (EVs) are a promising solution to reduce the transportation dependency on oil, as well as the environmental concerns. Realization of E-transportation relies on providing electrical energy to the EVs in an effective way. Energy storage system (ESS) technologies, including batteries and ultra-capacitors, have been significantly improved in terms of stored energy and power. Beside technology advancements, a battery management system is necessary to enhance safety, reliability and efficiency of the battery. Moreover, charging infrastructure is crucial to transfer electrical energy from the grid to the EV in an effective and reliable way. Every aspect of E-transportation is permeated by the presence of an intelligent hardware platform, which is embedded in the vehicle components, provided with the proper interfaces to address the communication, control and sensing needs. This embedded system controls the power electronics devices, negotiates with the partners in multi-agent scenarios, and performs fundamental tasks such as power flow control and battery management. The aim of this paper is to give an overview of the open challenges in E-transportation and to show the fundamental role played by embedded systems. The conclusion is that transportation electrification cannot fully be realized without the inclusion of the recent advancements in embedded systems

    Open-source Longitudinal Sleep Analysis From Accelerometer Data (DPSleep): Algorithm Development and Validation

    No full text
    BackgroundWearable devices are now widely available to collect continuous objective behavioral data from individuals and to measure sleep. ObjectiveThis study aims to introduce a pipeline to infer sleep onset, duration, and quality from raw accelerometer data and then quantify the relationships between derived sleep metrics and other variables of interest. MethodsThe pipeline released here for the deep phenotyping of sleep, as the DPSleep software package, uses a stepwise algorithm to detect missing data; within-individual, minute-based, spectral power percentiles of activity; and iterative, forward-and-backward–sliding windows to estimate the major Sleep Episode onset and offset. Software modules allow for manual quality control adjustment of the derived sleep features and correction for time zone changes. In this paper, we have illustrated the pipeline with data from participants studied for more than 200 days each. ResultsActigraphy-based measures of sleep duration were associated with self-reported sleep quality ratings. Simultaneous measures of smartphone use and GPS location data support the validity of the sleep timing inferences and reveal how phone measures of sleep timing can differ from actigraphy data. ConclusionsWe discuss the use of DPSleep in relation to other available sleep estimation approaches and provide example use cases that include multi-dimensional, deep longitudinal phenotyping, extended measurement of dynamics associated with mental illness, and the possibility of combining wearable actigraphy and personal electronic device data (eg, smartphones and tablets) to measure individual differences across a wide range of behavioral variations in health and disease. A new open-source pipeline for deep phenotyping of sleep, DPSleep, analyzes raw accelerometer data from wearable devices and estimates sleep onset and offset while allowing for manual quality control adjustments

    Predicting states of elevated negative affect in adolescents from smartphone sensors: A novel personalized machine learning approach

    No full text
    Adolescence is characterized by profound change, including increases in negative emotions. Approximately 84% of American adolescents own a smartphone, which can continuously and unobtrusively track variables potentially predictive of heightened negative emotions (e.g., activity levels, location, pattern of phone usage). The extent to which built-in smartphone sensors can reliably predict states of elevated negative affect in adolescents is an open question. In this study, adolescent participants (n = 22; ages 13-18) with low to high levels of depressive symptoms were followed for 15 weeks using a combination of ecological momentary assessments (EMAs) and continuously collected passive smartphone sensor data. EMAs probed negative emotional states (i.e., anger, sadness and anxiety) 2-3 times per day every other week throughout the study (total: 1,145 EMA measurements). Smartphone accelerometer, location and device state data were collected to derive 14 discrete estimates of behavior, including activity level, percentage of time spent at home, sleep onset and duration, and phone usage. A personalized ensemble machine learning model derived from smartphone sensor data outperformed other statistical approaches (e.g., linear mixed model) and predicted states of elevated anger and anxiety with acceptable discrimination ability (area under the curve (AUC) = 74% and 71%, respectively), but demonstrated more modest discrimination ability for predicting states of high sadness (AUC = 66%). To the extent that smartphone data could provide reasonably accurate real-time predictions of states of high negative affect in teens, brief “just-in-time” interventions could be immediately deployed via smartphone notifications or mental health apps to alleviate these states

    Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ):Rationale and Study Design of the Largest Global Prospective Cohort Study of Clinical High Risk for Psychosis

    Get PDF
    This article describes the rationale, aims, and methodology of the Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ). This is the largest international collaboration to date that will develop algorithms to predict trajectories and outcomes of individuals at clinical high risk (CHR) for psychosis and to advance the development and use of novel pharmacological interventions for CHR individuals. We present a description of the participating research networks and the data processing analysis and coordination center, their processes for data harmonization across 43 sites from 13 participating countries (recruitment across North America, Australia, Europe, Asia, and South America), data flow and quality assessment processes, data analyses, and the transfer of data to the National Institute of Mental Health (NIMH) Data Archive (NDA) for use by the research community. In an expected sample of approximately 2000 CHR individuals and 640 matched healthy controls, AMP SCZ will collect clinical, environmental, and cognitive data along with multimodal biomarkers, including neuroimaging, electrophysiology, fluid biospecimens, speech and facial expression samples, novel measures derived from digital health technologies including smartphone-based daily surveys, and passive sensing as well as actigraphy. The study will investigate a range of clinical outcomes over a 2-year period, including transition to psychosis, remission or persistence of CHR status, attenuated positive symptoms, persistent negative symptoms, mood and anxiety symptoms, and psychosocial functioning. The global reach of AMP SCZ and its harmonized innovative methods promise to catalyze the development of new treatments to address critical unmet clinical and public health needs in CHR individuals.</p
    corecore