3,868 research outputs found

    Expanding Biodiversity Conservation Beyond the Official Mandate of the Dwesa-Cwebe Nature Reserve of South Africa: qualitative assessment based on Nqabara administrative area

    Get PDF
    This paper addresses the problem of extending biodiversity conservation onto the communal lands of the Dwesa-Cwebe conservation area in the Eastern Cape, South Africa, by investigating the conditions that must be fulfilled for any success to be registered. These conditions were derived based on a qualitative survey conducted in the Nqabara Administrative Area. The study developed a conceptual framework to unravel the complex nature of the whole community conservation initiative. A focus group discussion was adopted as the data collection method; and the underlying factors that have contributed to the success of the initiative in the Nqabara Administrative Area were identified. Appropriate coding was assigned to each distinct and major factor for proper presentation of the results and observations were appropriately indicated to buffer the explanation of the achieved results. Recommendations were subsequently made for the Dwesa-Cwebe in terms of the decision-making instruments that demand critical consideration for any successful community biodiversity conservation to be achieved.Dwesa-Cwebe, Nqabara, biodiversity conservation, communal land, Resource /Energy Economics and Policy,

    An integrated security Protocol communication scheme for Internet of Things using the Locator/ID Separation Protocol Network

    Get PDF
    Internet of Things communication is mainly based on a machine-to-machine pattern, where devices are globally addressed and identified. However, as the number of connected devices increase, the burdens on the network infrastructure increase as well. The major challenges are the size of the routing tables and the efficiency of the current routing protocols in the Internet backbone. To address these problems, an Internet Engineering Task Force (IETF) working group, along with the research group at Cisco, are still working on the Locator/ID Separation Protocol as a routing architecture that can provide new semantics for the IP addressing, to simplify routing operations and improve scalability in the future of the Internet such as the Internet of Things. Nonetheless, The Locator/ID Separation Protocol is still at an early stage of implementation and the security Protocol e.g. Internet Protocol Security (IPSec), in particular, is still in its infancy. Based on this, three scenarios were considered: Firstly, in the initial stage, each Locator/ID Separation Protocol-capable router needs to register with a Map-Server. This is known as the Registration Stage. Nevertheless, this stage is vulnerable to masquerading and content poisoning attacks. Secondly, the addresses resolving stage, in the Locator/ID Separation Protocol the Map Server (MS) accepts Map-Request from Ingress Tunnel Routers and Egress Tunnel Routers. These routers in trun look up the database and return the requested mapping to the endpoint user. However, this stage lacks data confidentiality and mutual authentication. Furthermore, the Locator/ID Separation Protocol limits the efficiency of the security protocol which works against redirecting the data or acting as fake routers. Thirdly, As a result of the vast increase in the different Internet of Things devices, the interconnected links between these devices increase vastly as well. Thus, the communication between the devices can be easily exposed to disclosures by attackers such as Man in the Middle Attacks (MitM) and Denial of Service Attack (DoS). This research provided a comprehensive study for Communication and Mobility in the Internet of Things as well as the taxonomy of different security protocols. It went on to investigate the security threats and vulnerabilities of Locator/ID Separation Protocol using X.805 framework standard. Then three Security protocols were provided to secure the exchanged transitions of communication in Locator/ID Separation Protocol. The first security protocol had been implemented to secure the Registration stage of Locator/ID separation using ID/Based cryptography method. The second security protocol was implemented to address the Resolving stage in the Locator/ID Separation Protocol between the Ingress Tunnel Router and Egress Tunnel Router using Challenge-Response authentication and Key Agreement technique. Where, the third security protocol had been proposed, analysed and evaluated for the Internet of Things communication devices. This protocol was based on the authentication and the group key agreement via using the El-Gamal concept. The developed protocols set an interface between each level of the phase to achieve security refinement architecture to Internet of Things based on Locator/ID Separation Protocol. These protocols were verified using Automated Validation Internet Security Protocol and Applications (AVISPA) which is a push button tool for the automated validation of security protocols and achieved results demonstrating that they do not have any security flaws. Finally, a performance analysis of security refinement protocol analysis and an evaluation were conducted using Contiki and Cooja simulation tool. The results of the performance analysis showed that the security refinement was highly scalable and the memory was quite efficient as it needed only 72 bytes of memory to store the keys in the Wireless Sensor Network (WSN) device

    Interference management and system optimisation for Femtocells technology in LTE and future 4G/5G networks

    Get PDF
    Femtocells are seen to be the future of Long Term Evaluation (LTE) networks to improve the performance of indoor, outdoor and cell edge User Equipments (UEs). These small cells work efficiently in areas that suffer from high penetration loss and path-loss to improve the coverage area. It is said that 30% of total served UEs in LTE networks are vehicular, which poses challenges in LTE networks due to their high mobility, high vehicular penetration loss (VPL), high path loss and high interference. Therefore, self-optimising and dynamic solutions are required to incorporate more intelligence into the current standard of LTE system. This makes the network more adaptive, able to handle peak data demands and cope with the increasing capacity for vehicular UEs. This research has drawn a performance comparison between vehicular UEs who are served by Mobile-Femto, Fixed-Femto and eNB under different VPL scales that range between highs and lows e.g. 0dB, 25dB and 40dB. Deploying Mobile-Femto under high VPLs has improved the vehicular UE Ergodic capacity by 1% and 5% under 25dB and 40dB VPL respectively as compared to other eNB technologies. A noticeable improvement is also seen in signal strength, throughput and spectral efficiency. Furthermore, this research discusses the co-channel interference between the eNB and the Mobile-Femto as both share the same resources and bandwidth. This has created an interference issue from the downlink signals of each other to their UEs. There were no previous solutions that worked efficiently in cases where UEs and base stations are mobile. Therefore, this research has adapted an efficient frequency reuse scheme that worked dynamically over distance and achieved improved results in the signal strength and throughput of Macro and Mobile-Femto UE as compared to previous interference management schemes e.g. Fractional Frequency Reuse factor1 (NoFFR-3) and Fractional Frequency Reuse factor3 (FFR-3). Also, the achieved results show that implementing the proposed handover scheme together with the Mobile-Femto deployment has reduced the dropped calls probability by 7% and the blocked calls probability by 14% compared to the direct transmission from the eNB. Furthermore, the outage signal probabilities under different VPLs have been reduced by 1.8% and 2% when the VPLs are 25dB and 40dB respectively compared to other eNB technologies

    Novel group handover mechanism for cooperative and coordinated mobile femtocells technology in railway environment

    Get PDF
    Recently, the Mobile Femto (MF) Technology has been debated in many research papers to be a promising solution that will dominate future networks. This small cell technology plays a major role in supporting and maintaining network connectivity, enhancing the communication service as well as user experience for passengers in High-Speed Trains (HSTs) environments. Within the railway environment, there are many MF Technologies placed on HSTs to enhance the train passengers’ internet experience. Those users are more affected by the high penetration loss, path loss, dropped signals, and the unnecessary number of Handovers (HOs). Therefore, it is more appropriate to serve those mobile users by the in-train femtocell technology than being connected to the outside Access Points (APs) or Base Stations (BSs). Hence, having a series of MFs (called Cooperative and Coordinated MFs -CCMF) installed inside the train carriages has been seen to be a promising solution for train environments and future networks. The CCMF Technologies establish Backhaul (BH) links with the serving mother BS (DeNB). However, one of the main drawbacks in such an environment is the frequent and unnecessary number of HO procedures for the MFs and train passengers. Thus, this paper proposes an efficient Group HO mechanism that will improve signal connection and mitigate the impact of a signal outage when train carriages move from one serving cell to another. Unlike most work that uses Fixed Femtocell (FF) architecture, this work uses MF architecture. The achieved results via Matlab simulator show that the proposed HO scheme has achieved less outage probability of 0.055 when the distance between the MF and mobile users is less than 10 m compared to the signal outage probability of the conventional HO scheme. More results have shown that the dropping calls probability has been reduced when mobile users are connected to the MF compared to the direct transmission from the eNB. That is in turn has have improved the call duration of mobile UEs and reduced the dropping calls probability for mobile users who are connected to the MF compared to eNB direct connection UEs

    Estimation of ransomware payments in Bitcoin ecosystem

    Get PDF
    Ransomware is one of the malicious software that is designed to prevent access to computer system until a sum of money is paid by the victim to the attacker. During the infection, the computer will either be locked, or the data will be encrypted. Ransoms are often demanded in Bitcoin, a largely anonymous Cryptocurrency. All transactions are recorded in the blockchain and verified by peer-to-peer networks. This paper investigation collects ten recent ransomware families, which use bitcoin as a payment for their ransom. In conjunction, we identified, collected and analysed Bitcoin addresses of users combining information from a clustering model and the blockchain. We used a heuristic clustering algorithm to reveal the hidden node's payment of ransomware. Finally, we demonstrated the characteristics of ransomware encryption mechanisms that include a view of the infected process and its execution, and the distinctive demands of ransom

    Cooperative and coordinated Mobile Femtocells technology in high-speed vehicular environments: mobility and interference management

    Get PDF
    In future networks, most users who will be accessing wireless broadband will be vehicular. Serving those users cost-effectively and improving their signal quality has been the main concern of many studies. Thus, the deployment of Mobile Femtocell (Mobile-Femto) technology on public transportation is seen to be one of the promising solutions. Mobile-Femto comes with its mobility and interference challenges. Therefore, eliminating the Vehicular Penetration Loss (VPL) and interference while improving signal quality and mobility for train passengers is the main concern of this paper. The initial system-level evaluation showed that the dedicated Mobile-Femto deployment has great potential in improving users’ experience inside public transportation. The Downlink (DL) results of the Proposed Interference Management Scheme (PIMS) showed significant improvement in Mobile-Femto User Equipment (UE) gains (up to 50%) without impacting the performance of macro UEs. In contrast, the Uplink (UL) results showed noticeable gains for both macro UEs and Mobile-Femto UEs
    • 

    corecore