4 research outputs found

    Transgenerational Adaptation to Heavy Metal Salts in Arabidopsis

    Get PDF
    Exposure to abiotic and biotic stress results in changes in plant physiology and triggers genomic instability. Recent reports suggest that the progeny of stressed plants also exhibit changes in genome stability, stress tolerance, and methylation. Here we analyzed whether exposure to Ni2+, Cd2+, and Cu2+ salts leads to transgenerational changes in homologous recombination frequency and stress tolerance. We found that the immediate progeny of stressed plants exhibited an increased rate of recombination. However, when the progeny of stressed plants was propagated without stress, recombination reverted to normal levels. Exposure of plants to heavy metals for five consecutive generations (S1–S5) resulted in recombination frequency being maintained at a high level. Skipping stress following two to three generations of propagation with 50 mM Ni2+ or Cd2+ did not decrease the recombination frequency, suggesting plant acclimation to upregulated recombination. Analysis of the progeny of plants exposed to Cu2+ and Ni2+ indicated higher stress tolerance to the heavy metal parental plants were exposed to. Tolerance was higher in plants propagated with stress for three to five generations, which resulted in longer roots than plants propagated on heavy metals for only one to two generations. Tolerance was also more prominent upon exposure to a higher concentration of salts. The progeny of stressed plants were also more tolerant to NaCl and methyl methane sulfonate

    The stimulatory effect of CaCl2, NaCl and NH4NO3 salts on the ssDNA-binding activity of RecA depends on nucleotide cofactor and buffer pH

    Get PDF
    Open access journalThe single-stranded DNA binding activity of the Escherichia coli RecA protein is crucial for homologous recombination to occur. This and other biochemical activities of ssDNA binding proteins may be affected by various factors. In this study, we analyzed the effect of CaCl2, NaCl and NH4NO3 salts in combination with the pH and nucleotide cofactor effect on the ssDNA-binding activity of RecA. The studies revealed that, in addition to the inhibitory effect, these salts exert also a stimulatory effect on RecA. These effects occur only under very strict conditions, and the presence or absence and the type of nucleotide cofactor play here a major role. It was observed that in contrast to ATP, ATPγS prevented the inhibitory effect of NaCl and NH4NO3, even at very high salt concentration. These results indicate that ATPγS most likely stabilizes the structure of RecA required for DNA binding, making it resistant to high salt concentrations.Ye
    corecore