5 research outputs found

    Penggabungan Keputusan Pada Klasifikasi Multi-label

    Get PDF
    Klasifikasi adalah bagian dari sistem pembelajar yang fokus pada pemahaman pola melalui representasi dan generalisasi data. Penentuan prediksi hasil klasifikasi terbaik menjadi masalah jika terdapat beberapa masukan dari metode yang berbeda-beda pada lingkungan data yang heterogen. Penggabungan keputusan dapat digunakan untuk menentukan rekomendasi keluaran beberapa metode klasifikasi. Kami memilih pendekatan voting dan meta-learning sebagai metode penggabungan keputusan. Ada dua fase yang dilakukan pada penelitian ini, yaitu fase pembangunan prediksi oleh metode klasifikasi yang heterogen dan fase penggabungan rekomendasi metode-metode tersebut menjadi satu kesimpulan jawaban. Karakteristik klasifikasi yang menjadi fokus adalah klasifikasi multi-label. Binary Relevance (BR), Classifier Chains (CC), Hierarchichal of Multi-label Classifier (HOMER), dan Multi-label k Nearest Neighbors (MLkNN) adalah metode klasifikasi yang digunakan sebagai penyedia rekomendasi prediksi melalui pendekatan yang berbeda-beda. Pada fase penggabungan keputusan, metode Ignore diajukan sebagai pendekatan meta-learning. Ignore menggabungkan keputusan dengan cara mempelajari pola masukan dari sistem pembelajar. Untuk membandingkan kinerja Ignore, metode konsensus digunakan sebagai pendekatan voting. Hasil akhir menunjukkan bahwa Ignore memberikan hasil terbaik untuk parameter recall. Ignore memprediksi nilai false negative lebih sedikit dibandingkan dengan metode konsensus 0,5 dan 0,75. Hasil studi ini menunjukkan bahwa Ignore dapat digunakan sebagai meta-learning, meskipun kinerja Ignore harus diperbaiki agar dapat beradaptasi dengan data yang heterogen

    Identifikasi Struktur Resistivitas Daerah Geothermal “T” Berdasarkan Hasil Pemodelan 2d Datamagnetotelurik

    Full text link
    Resistivity structure identification of magnetotelluric data was made at geothermal area“T”, located in southern Indonesia. This process is based on the modeling result of 2-dimention magnetotelluric data. The modeling result of magnetotelluric data shows relativity structure dissemination on a scale of 0-10 ohm.m in a thickness of 1 km (clay cap), on a scale of 10-100 ohm.m in a depth of 1-2 km (reservoir zone), and on a scale of 100-1000 ohm.m in a depth of 2-3 km (heat source zone). The result of relativity structure dissemination can be used to delineate an area with geothermal prospect around 12 km2

    Pemodelan 2 Dimensi Data Magnetotellurik Berdasarkan Analisis Phase Tensor dalam Penentuan Geoelectrical Strike dan Dimensionalitas Data di Lapangan Panas Bumi “X”

    Full text link
    Magnetotelluric research has been done on the geothermal field "X" aims to indentify dimensionality of data, direction of geoelectrical strike and map resistivity distribution of subsurface structure. Before modelling 2 dimensional subsurface structure, MT data must go through stage quality control data, analysis of dimensionalitas data and analysis direction of geoelectrical strike to get 2 dimensional structure model of the subsurface are accurate. The stages of quality control data was done by eliminate the points in the curve of resistivity and phase which out of the trend that is considered as noise. Dimensionality data analysis use curve of three parameters invariant phase tensor i.e phi maximum, phi minimum and beta. Analysis of the geolectrical strike direction was done by showing a reduction of angle and in rose diagram. Overall the analysis phase tensor was performed on 60 tensor magnetotelluric data in the geothermal field "X". Modeling subsurface resistivity structure use the scheme forward modelling and inverse modelling. The results of selection cross power showed that magnetotelluric data are dominated by good quality data. The results of dimensionality data analysis indicates that the dimensionality data of MT data in the geothermal field "X" consists of structure with dimensionality 1D, 2D and 3D structure. Structure with dimensionality 1D is in frequency range 320 – 44 Hz, Structure with dimensionality 2D is in frequency range 44 – 0,3 Hz and structure with dimensionality 3D is in frequency range 0.3 – 0.004 Hz in the geothermal field "X". Rose diagram in frequency range 320 – 0.3 Hz was combined with direction of regional structure in geothermal field "X" indicates that the direction of geoelectrical strike is N330oE. 2 dimensional modeling has been done in the frequency range 320 – 0,3 Hz. Data is rotated in the direction of geoelectrical strike before the modeling stage. 2 dimensional model consisting of five line perpendicular to the direction of the structure in the field. 2 dimensional model show caprock layer has s resistivity range 5-20 Ohm-m that thicken to the Northwest while the reservoir layer has a resistivity range 80-120 Ohm-m are thinned to the Northwest. The heat source has a resistivity range 400-500 Ohm-m and located at depth 3.5 km below the surface

    Identifikasi Geological Strike dan Dimensionalitas Berdasarkan Analisis Phase Tensor untuk Pemodelan 2D Magnetotelurik di Lapangan Panas Bumi “GYF”

    Full text link
    Magnetotellurics method is frequently used in exploration of geothermal resources for determining the subsurface resistivity distribution of the Earth. An accurate representation of the Earth\u27s resistivity structure can be obtained by knowing the direction of geoelectrical strike and dimensionality structure prior to modelling. Besides those both cases, distortion in the data magnetotelluric can lead to errors of interpretation. Therefore, this study was conducted to identify the geoelectrical strike direction and dimensionality structure in the “GYF” geothermal field using phase tensor analysis prior to 2D modelling. Three invariant parameters of phase tensor i.e ellipticity, phase tensor skew angle (β) and Azimuth of phase tensor maximum (α-β) are used to get the information about the dimensionality and geoelectrical strike direction on 65 magnetotelluric data in “GYF” geothermal field. Results of the phase tensor analysis show that the direction of geoelectrical strike is N60°W or 300° at frequency (10-0,2 Hz) and dimensionality of subsurface structure consists of a structure 1D, 2D and 3D. Structure of 1D and 2D is in the frequency range 320 to 0,2 Hz, while the 3D structure is at a low frequency, ie f < 0,2 Hz. Identification of geoelectrical strike and dimensionality in 2D magnetotelluric modelling can minimize misinterpretation

    Pemodelan Inversi Gayaberat dengan Panduan Euler Deconvolution untuk Struktur Bawah Permukaan di Lapangan Panas Bumi ”B24”

    Full text link
    Gravity data inversion requires a good initial mesh model to generate a good subsurface model. Ambiguities in gravity data can be reduced by Euler deconvolution's point cluster result that show its position and depth. These point cluster can give an additional information to shape the initial mesh model for inversion. The purpose of the study was to determine the influence of Euler deconvolution to the inversion. Inversion was done by the steepest descent algorithm. Euler deconvolution method and inversion algorithm were tested on synthetic models and showed good results that Euler deconvolution able to construct actual density distribution. These methods were applied to the gravity data on the "B24” geothermal field. Residual anomaly map has a value of -12 to 24 mGal. The geothermal field is estimated that it has a major fault which mainly striking in northwest-southeast direction. These estimates are supported by the results of Euler deconvolution which indicate the presence of fault and graben structure. Euler deconvolution and inversion method were applied perpendicularly to the main structure at the southwest-northeast direction. The results of this study are the Euler deconvolution method is able to provide information for a mesh geometry for inversion. From the inversion result, “B24” geothermal field is estimated has a high-low-high density distribution dominated by andesite and tuff. To improve the results of the research, it needs a measurement point addition, additional modeling area, geological and geochemical data to strengthen the interpretation
    corecore