227 research outputs found

    Optical and morphological characterization of BaSe thin films synthesized via chemical bath deposition

    Get PDF
    Barium selinide (BaSe) thin films were deposited onto glass substrate via chemical bath deposition (CBD) method. The effect of deposition time on the thin film formation mechanism has been studied to understand the optimum conditions for synthesis process. The phase identification and surface morphology of thin coated films were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively while the optical characterizations were conducted by means of ultraviolet visible (UV- Vis) spectroscopy. XRD study confirms the polycrystalline hexagonal structure of the thin films. The XRD peaks at 2θ =23.84° and 2θ = 23.86o showed the preferential orientation along the (021) and (201) plane with deposition time 20 hours and 22 hours respectively, whereas the major peak at (111) was obtained with a deposition time of 24 hours. With the increase in deposition time up to 24 hours, the film gradually grew thicker along with the fine increase in the grain size. The direct optical band gap of the films was measured to be varied from 1.33 to 3.37 eV

    Can a wormhole generate electromagnetic field?

    Full text link
    We have considered the possibility of a slowly rotating wormhole surrounded by a cloud of charged particles. Due to slow rotation of the wormhole, the charged particles are dragged thereby producing an electromagnetic field. We have determined the strength of this electromagnetic field and the corresponding flux of radiation.Comment: 9 pages, typos fixe

    Thin-shell wormholes from black holes with dilaton and monopole fields

    Full text link
    We provide a new type of thin-shell wormhole from the black holes with dilaton and monopole fields. The dilaton and monopole that built the black holes may supply fuel to construct the wormholes. Several characteristics of this thin-shell wormhole have been discussed. Finally, we discuss the stability of the thin-shell wormholes with a "phantom-like" equation of state for the exotic matter at the throat.Comment: 6 pages and 3 figures, some typos are corrected and accepted in Int.J.Theor.Phy

    Galactic rotation curves inspired by a noncommutative-geometry background

    Full text link
    This paper discusses the observed at rotation curves of galaxies in the context of noncommutative geometry. The energy density of such a geometry is diffused throughout a region due to the uncertainty encoded in the coordinate commutator. This intrinsic property appears to be sufficient for producing stable circular orbits, as well as attractive gravity, without the need for dark matter.Comment: 12 pages, 3 figures. Published in Gen.Rel.Grav. 44 (2012) 905-91

    Stability of Non-asymptotically flat thin-shell wormholes in generalized dilaton-axion gravity

    Full text link
    We construct a new type of thin-shell wormhole for non-asymptotically flat charged black holes in generalized dilaton-axion gravity inspired by low-energy string theory using cut-and-paste technique. We have shown that this thin shell wormhole is stable. The most striking feature of our model is that the total amount of exotic matter needed to support the wormhole can be reduced as desired with the suitable choice of the value of a parameter. Various other aspects of thin-shell wormhole are also analyzed.Comment: 15 pages and 11 figures. Minor revisions have been done. Accepted in Int.J.Theor.Phy

    Composition, temperature and frequency dependent magnetic, dielectric and electrical properties of magnesium-zinc ferrites

    Get PDF
    Polycrystalline spinel MgxZn0.3Cu0.7-2xFe2+xO4, where x = 0.10, 0.20, 0.25, 0.30 and 0.35 ferrites (hereafter abbreviated as Mg-Zn) have been prepared by conventional double sintering technique. The samples were sintered at 1250°C in air for 6 hours. Measurements have been done at temperature and frequency ranges of 0 - 350°C and 0 - 500 kHz, respectively. In this work, some extrinsic magnetic properties such as Curie temperature, initial permeability, loss factor, quality factor, dielectric constant and resistivity of the samples have been studied. The Curie temperature and loss tangent of the samples decreased with increase in Cu-content whereas permeability, Qfactor, resistivity and dielectric constant have been noticed to be increased with the increase in Cucontent. The decrease in Curie temperature related to fact of weakening the strength of exchange AB interaction. Maxwell-Wagner type of interfacial polarization might have found correlated with the normal dielectric behavior of the samples, however no relaxation peaks were observed in the dielectric dispersion curves of the Mg-Zn samples in virgin state or doped state

    Modeling galactic halos with predominantly quintessential matter

    Get PDF
    This paper discusses a new model for galactic dark matter by combining an anisotropic pressure field corresponding to normal matter and a quintessence dark energy field having a characteristic parameter ωq\omega_q such that 1<ωq<13-1<\omega_q< -\frac{1}{3}. Stable stellar orbits together with an attractive gravity exist only if ωq\omega_q is extremely close to 13-\frac{1}{3}, a result consistent with the special case studied by Guzman et al. (2003). Less exceptional forms of quintessence dark energy do not yield the desired stable orbits and are therefore unsuitable for modeling dark matter.Comment: 12 pages, 1 figur

    Bianchi Type III Anisotropic Dark Energy Models with Constant Deceleration Parameter

    Full text link
    The Bianchi type III dark energy models with constant deceleration parameter are investigated. The equation of state parameter ω\omega is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical aspect of the dark energy models are discussed.Comment: 12 pages, 2 figures, Accepted version of IJT

    Kaluza-Klein Type Robertson Walker Cosmological Model With Dynamical Cosmological Term Λ\Lambda

    Full text link
    In this paper we have analyzed the Kaluza-Klein type Robertson Walker (RW) cosmological models by considering three different forms of variable Λ\Lambda: Λ(a˙a)2\Lambda\sim(\frac{\dot{a}}{a})^2,Λ(a¨a)\Lambda\sim(\frac{\ddot{a}} {a}) and Λρ\Lambda \sim \rho. It is found that, the connecting free parameters of the models with cosmic matter and vacuum energy density parameters are equivalent, in the context of higher dimensional space time. The expression for the look back time, luminosity distance and angular diameter distance are also derived. This work has thus generalized to higher dimensions the well-known results in four dimensional space time. It is found that there may be significant difference in principle at least, from the analogous situation in four dimensional space time.Comment: 16 pages, no figur
    corecore