3 research outputs found

    Identifying individual nutrient deficiencies of grapevine leaves using hyperspectral imaging

    Get PDF
    The efficiency of a vineyard management system is directly related to the effective management of nutritional disorders, which significantly downgrades vine growth, crop yield and wine quality. To detect nutritional disorders, we successfully extracted a wide range of features using hyperspectral (HS) images to identify healthy and individual nutrient deficiencies of grapevine leaves. Features such as mean reflectance, mean first derivative reflectance, variation index, mean spectral ratio, normalised difference vegetation index (NDVI) and standard deviation (SD) were employed at various stages in the ultraviolet (UV), visible (VIS) and near-infrared (N.I.R.) regions for our experiment. Leaves were examined visually in the laboratory and grouped as either healthy (i.e. control) or unhealthy. Then, the features of the leaves were extracted from these two groups. In a second experiment, features of individual nutrient-deficient leaves (e.g., N, K and Mg) were also analysed and compared with those of control leaves. Furthermore, a customised support vector machine (SVM) was used to demonstrate that these features can be utilised with a high degree of effectiveness to identify unhealthy samples and not only to distinguish from control and nutrient deficient but also to identify individual nutrient defects. Therefore, the proposed work corroborated that HS imaging has excellent potential to analyse features based on healthiness and individual nutrient deficiencies of grapevine leaves

    Features Of ICU Admission In X-Ray Images Of Covid-19 Patients

    No full text
    This paper presents an original methodology for extracting semantic features from X-rays images that correlate to severity from a data set with patient ICU admission labels through interpretable models. The validation is partially performed by a proposed method that correlates the extracted features with a separate larger data set that does not contain the ICU-outcome labels. The analysis points out that a few features explain most of the variance between patients admitted in ICUs or not. The methods herein can be viewed as a statistical approach highlighting the importance of features related to ICU admission that may have been only qualitatively reported. In between features shown to be over-represented in the external data set were ones like 'Consolidation' (1.67), 'Alveolar' (1.33), and 'Effusion' (1.3). A brief analysis on the locations also showed higher frequency in labels like 'Bilateral' (1.58) and Peripheral (1.28) in patients labelled with higher chances to be admitted in ICU. To properly handle the limited data sets, a state-of-the-art lung segmentation network was also trained and presented, together with the use of low-complexity and interpretable models to avoid overfitting
    corecore