1,405 research outputs found

    High-Affinity Quasi-Specific Sites in the Genome: How the DNA-Binding Proteins Cope with Them

    Get PDF
    AbstractMany prokaryotic transcription factors home in on one or a few target sites in the presence of a huge number of nonspecific sites. Our analysis of λ-repressor in the Escherichia coli genome based on single basepair substitution experiments shows the presence of hundreds of sites having binding energy within 3 Kcal/mole of the OR1 binding energy, and thousands of sites with binding energy above the nonspecific binding energy. The effect of such sites on DNA-based processes has not been fully explored. The presence of such sites dramatically lowers the occupation probability of the specific site far more than if the genome were composed of nonspecific sites only. Our Brownian dynamics studies show that the presence of quasi-specific sites results in very significant kinetic effects as well. In contrast to λ-repressor, the E. coli genome has orders of magnitude lower quasi-specific sites for GalR, an integral transcription factor, thus causing little competition for the specific site. We propose that GalR and perhaps repressors of the same family have evolved binding modes that lead to much smaller numbers of quasi-specific sites to remove the untoward effects of genomic DNA

    Scalable Anytime Algorithms for Learning Fragments

    Get PDF
    International audienceAbstract Linear temporal logic (LTL) is a specification language for finite sequences (called traces) widely used in program verification, motion planning in robotics, process mining, and many other areas. We consider the problem of learning formulas in fragments of LTL without the U\mathbf {U} U -operator for classifying traces; despite a growing interest of the research community, existing solutions suffer from two limitations: they do not scale beyond small formulas, and they may exhaust computational resources without returning any result. We introduce a new algorithm addressing both issues: our algorithm is able to construct formulas an order of magnitude larger than previous methods, and it is anytime, meaning that it in most cases successfully outputs a formula, albeit possibly not of minimal size. We evaluate the performances of our algorithm using an open source implementation against publicly available benchmarks

    Flavour equilibration in quark-gluon plasma

    Get PDF
    Within the framework of a dynamical and physically transparent model developed earlier, we study the time evolution of various quark flavours in the baryon-free region in ultrarelativistic heavy ion collisions. We show that even under optimistic conditions, the quark-gluon system fails to achieve chemical equilibrium
    corecore