14 research outputs found

    Overexpression of the Synthetic Chimeric Native-T-Phylloplanin-GFP Genes Optimized for Monocot and Dicot Plants Renders Enhanced Resistance to Blue Mold Disease in Tobacco (\u3cem\u3eN. Tabacum L.\u3c/em\u3e)

    Get PDF
    To enhance the natural plant resistance and to evaluate the antimicrobial properties of phylloplanin against blue mold, we have expressed a synthetic chimeric native-phylloplanin-GFP protein fusion in transgenic Nicotiana tabacum cv. KY14, a cultivar that is highly susceptible to infection by Peronospora tabacina. The coding sequence of the tobacco phylloplanin gene along with its native signal peptide was fused with GFP at the carboxy terminus. The synthetic chimeric gene (native-phylloplanin-GFP) was placed between the modified Mirabilis mosaic virus full-length transcript promoter with duplicated enhancer domains and the terminator sequence from the rbcSE9 gene. The chimeric gene, expressed in transgenic tobacco, was stably inherited in successive plant generations as shown by molecular characterization, GFP quantification, and confocal fluorescent microscopy. Transgenic plants were morphologically similar to wild-type plants and showed no deleterious effects due to transgene expression. Blue mold-sensitivity assays of tobacco lines were performed by applying P. tabacina sporangia to the upper leaf surface. Transgenic lines expressing the fused synthetic native-phyllopanin-GFP gene in the leaf apoplast showed resistance to infection. Our results demonstrate that in vivo expression of a synthetic fused native-phylloplanin-GFP gene in plants can potentially achieve natural protection against microbial plant pathogens, including P. tabacina in tobacco

    Time Series Study of Rhino Habitat and its Impact on Rhino Population in Gorumara National Park through Remote Sensing Technology

    Full text link
    Gorumara National Park located within the flood plains of Jaldhaka and Murty river in the Dooars area of Northern West Bengal has a mosaic of natural vegetation consisting of tall grasslands, woodlands, tropical semi-evergreen forests and tropical moist deciduous forests, part of which get inundated in recurring floods. The Greater Indian One Horned Rhinoceros which is the flagship specie of this National Park has positively responded to the regular Wild Life Habitat Management regime introduced since 1995 showing trends of steady increase in its population as the habitat manipulation resulted in the increase of the Rhino habitat. This review tries to establish the Rhino population dynamics vis a vis increase in Rhino habitat using Remote sensing technology over the years since the area comes under purview of Protected Area network management

    Plant-Derived SAC domain of PAR-4 (Prostate Apoptosis Response 4) Exhibits Growth Inhibitory Effects in Prostate Cancer Cells

    Get PDF
    The gene Par-4 (Prostate Apoptosis Response 4) was originally identified in prostate cancer cells undergoing apoptosis and its product Par-4 showed cancer specific pro-apoptotic activity. Particularly, the SAC domain of Par-4 (SAC-Par-4) selectively kills cancer cells leaving normal cells unaffected. The therapeutic significance of bioactive SAC-Par-4 is enormous in cancer biology; however, its large scale production is still a matter of concern. Here we report the production of SAC-Par-4-GFP fusion protein coupled to translational enhancer sequence (5′ AMV) and apoplast signal peptide (aTP) in transgenic Nicotiana tabacum cv. Samsun NN plants under the control of a unique recombinant promoter M24. Transgene integration was confirmed by genomic DNA PCR, Southern and Northern blotting, Real-time PCR, and Nuclear run-on assays. Results of Western blot analysis and ELISA confirmed expression of recombinant SAC-Par-4-GFP protein and it was as high as 0.15% of total soluble protein. In addition, we found that targeting of plant recombinant SAC-Par-4-GFP to the apoplast and endoplasmic reticulum (ER) was essential for the stability of plant recombinant protein in comparison to the bacterial derived SAC-Par-4. Deglycosylation analysis demonstrated that ER-targeted SAC-Par-4-GFP-SEKDEL undergoes O-linked glycosylation unlike apoplast-targeted SAC-Par-4-GFP. Furthermore, various in vitro studies like mammalian cells proliferation assay (MTT), apoptosis induction assays, and NF-κB suppression suggested the cytotoxic and apoptotic properties of plant-derived SAC-Par-4-GFP against multiple prostate cancer cell lines. Additionally, pre-treatment of MAT-LyLu prostate cancer cells with purified SAC-Par-4-GFP significantly delayed the onset of tumor in a syngeneic rat prostate cancer model. Taken altogether, we proclaim that plant made SAC-Par-4 may become a useful alternate therapy for effectively alleviating cancer in the new era

    Regression of Triple-Negative Breast Cancer in a Patient-Derived Xenograft Mouse Model by Monoclonal Antibodies against IL-12 p40 Monomer

    No full text
    Although some therapies are available for regular breast cancers, there are very few options for triple-negative breast cancer (TNBC). Here, we demonstrated that serum level of IL-12p40 monomer (p40) was much higher in breast cancer patients than healthy controls. On the other hand, levels of IL-12, IL-23 and p40 homodimer (p402) were lower in serum of breast cancer patients as compared to healthy controls. Similarly, human TNBC cells produced greater level of p40 than p402. The level of p40 was also larger than p402 in serum of a patient-derived xenograft (PDX) mouse model. Accordingly, neutralization of p40 by p40 mAb induced death of human TNBC cells and tumor shrinkage in PDX mice. While investigating the mechanism, we found that neutralization of p40 led to upregulation of human CD4+IFNγ+ and CD8+IFNγ+ T cell populations, thereby increasing the level of human IFNγ and decreasing the level of human IL-10 in PDX mice. Finally, we demonstrated the infiltration of human cytotoxic T cells, switching of tumor-associated macrophage M2 (TAM2) to TAM1 and suppression of transforming growth factor β (TGFβ) in tumor tissues of p40 mAb-treated PDX mice. Our studies identify a possible new immunotherapy for TNBC in which p40 mAb inhibits tumor growth in PDX mice

    Expression of CAP2, an APETALA2-Family Transcription Factor from Chickpea, Enhances Growth and Tolerance to Dehydration and Salt Stress in Transgenic Tobacco

    No full text
    The APETALA2 (AP2) domain defines a large family of DNA-binding proteins that play important roles in plant morphology, development, and stress response. We describe isolation and characterization of a gene (CAP2) from chickpea (Cicer arietinum) encoding a novel AP2-family transcription factor. Recombinant CAP2 protein bound specifically to C-repeat/dehydration-responsive element in gel-shift assay and transactivated reporter genes in yeast (Saccharomyces cerevisiae) one-hybrid assay. CAP2 appeared to be a single/low copy intronless gene, and the protein product localized in the nucleus. Transcript level of CAP2 increased by dehydration and by treatment with sodium chloride, abscisic acid, and auxin, but not by treatment with low temperature, salicylic acid, and jasmonic acid. The 35S promoter-driven expression of CAP2 in tobacco (Nicotiana tabacum) caused drastic increase in the leaf cell size, and, thereby, in leaf surface area and number of lateral roots. Transgenic plants demonstrated more tolerance to dehydration and salt stress than the wild-type plants. Transgenic plants expressed higher steady-state transcript levels of abiotic stress-response genes NtERD10B and NtERD10C and auxin-response genes IAA4.2 and IAA2.5. Taken together, our results indicated a mutual interrelation between plant growth-development and abiotic stress-response pathways and a probable involvement of CAP2 in both the signaling pathways

    Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive, Improves Cognitive Functions in Mice after Controlled Cortical Impact Injury

    No full text
    Traumatic brain injury (TBI) is a major health concern, sometimes leading to long-term neurological disability, especially in children, young adults and war veterans. Although research investigators and clinicians have applied different treatment strategies or neurosurgical procedures to solve this health issue, we are still in need of an effective therapy to halt the pathogenesis of brain injury. Earlier, we reported that sodium benzoate (NaB), a metabolite of cinnamon and a Food and Drug Administration-approved drug against urea cycle disorders and glycine encephalopathy, protects neurons in animal models of Parkinson’s disease and Alzheimer’s disease. This study was undertaken to examine the therapeutic efficacy of NaB in a controlled cortical impact (CCI)-induced preclinical mouse model of TBI. Oral treatment with NaB, but not sodium formate (NaFO), was found to decrease the activation of microglia and astrocytes and to inhibit the expression of inducible nitric oxide synthase (iNOS) in the hippocampus and cortex of CCI-insulted mice. Further, administration of NaB also reduced the vascular damage and decreased the size of the lesion cavity in the brain of CCI-induced mice. Importantly, NaB-treated mice showed significant improvements in memory and locomotor functions as well as displaying a substantial reduction in depression-like behaviors. These results delineate a novel neuroprotective property of NaB, highlighting its possible therapeutic importance in TBI

    Expression of c-Myc oncogene in sinonasal cancer.

    No full text
    corecore