12 research outputs found

    Expression and cellular localization of hepcidin mRNA and protein in normal rat brain.

    Get PDF
    BACKGROUND: Hepcidin is a peptide hormone belonging to the defensin family of cationic antimicrobial molecules that has an essential role in systemic iron homeostasis. The peptide is synthesised by hepatocytes and transported in the circulation to target tissues where it regulates the iron export function of the ferrous iron permease, ferroportin. In the brain hepcidin protein has been identified using immuno-histochemistry and mRNA by real-time PCR but not by in situ hybridisation raising the question of whether there is measurable transcription of the hepcidin gene in the central nervous system. Alternatively hepcidin could be transported as a hormone to the brain via the circulation. RESULTS: By RT-PCR hepcidin mRNA was present at low level throughout normal rat brain while in situ hybridisation to detect low-abundant mRNA revealed that transcripts were restricted to endothelium of blood vessels and choroid plexus. In contrast, hepcidin protein analysed by immuno-histochemistry was highly expressed in blood vessels, in endothelium and in pericytes. Hepcidin was also present in glial cells and in the olfactory bulb, sub-ventricular zone and dentate gyrus, areas where neurogenesis and synaptic plasticity are maintained throughout adult life. The hepcidin species identified by Western blotting in sub-ventricular zone, cortex and hippocampus migrated as a ~2.8 kDa band, identical in size to hepcidin present in normal rat serum suggesting that hepcidin in brain was the full-length biologically active 25 amino acid peptide. Hepcidin co-localised with ferroportin in ependymal cells of the sub-ventricular zone and in the corpus callosum consistent with a regulatory role in iron metabolism at these sites. CONCLUSIONS: Hepcidin protein was widely expressed in brain parenchyma while levels of hepcidin gene transcription appeared to be below the limits of detection of the in situ hybridisation probes. This disparity suggests that not all hepcidin in the brain is transcribed in situ and may originate in part outside the brain. The properties of hepcidin as a cationic peptide hormone are reflected in the finding of hepcidin in the walls of blood vessels and in pericytes and glia, cells that may be involved in transporting the peptide into brain interstitium

    Interplay of Ferritin Accumulation and Ferroportin Loss in Ageing Brain: Implication for Protein Aggregation in Down Syndrome Dementia, Alzheimer's, and Parkinson's Diseases.

    Get PDF
    Iron accumulates in the ageing brain and in brains with neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Down syndrome (DS) dementia. However, the mechanisms of iron deposition and regional selectivity in the brain are ill-understood. The identification of several proteins that are involved in iron homeostasis, transport, and regulation suggests avenues to explore their function in neurodegenerative diseases. To uncover the molecular mechanisms underlying this association, we investigated the distribution and expression of these key iron proteins in brain tissues of patients with AD, DS, PD, and compared them with age-matched controls. Ferritin is an iron storage protein that is deposited in senile plaques in the AD and DS brain, as well as in neuromelanin-containing neurons in the Lewy bodies in PD brain. The transporter of ferrous iron, Divalent metal protein 1 (DMT1), was observed solely in the capillary endothelium and in astrocytes close to the ventricles with unchanged expression in PD. The principal iron transporter, ferroportin, is strikingly reduced in the AD brain compared to age-matched controls. Extensive blood vessel damage in the basal ganglia and deposition of punctate ferritin heavy chain (FTH) and hepcidin were found in the caudate and putamen within striosomes/matrix in both PD and DS brains. We suggest that downregulation of ferroportin could be a key reason for iron mismanagement through disruption of cellular entry and exit pathways of the endothelium. Membrane damage and subsequent impairment of ferroportin and hepcidin causes oxidative stress that contributes to neurodegeneration seen in DS, AD, and in PD subjects. We further propose that a lack of ferritin contributes to neurodegeneration as a consequence of failure to export toxic metals from the cortex in AD/DS and from the substantia nigra and caudate/putamen in PD brain

    Impaired Iron Homeostasis and Haematopoiesis Impacts Inflammation in the Ageing Process in Down Syndrome Dementia.

    Get PDF
    Down syndrome (DS) subjects are more likely to develop the clinical features of Alzheimer's disease (AD) very early in the disease process due to the additional impact of neuroinflammation and because of activation of innate immunity. Many factors involved in the neuropathology of AD in DS, including epigenetic factors, innate immunity and impaired haematopoiesis, contribute significantly towards the pathophysiology and the enhanced ageing processes seen in DS and as a consequence of the triplication of genes RUNX1, S100β and OLIG2, together with the influence of proteins that collectively protect from cellular defects and inflammation, which include hepcidin, ferritin, IL-6 and TREM2. This study is aimed at determining whether genetic variants and inflammatory proteins are involved in haematopoiesis and cellular processes in DS compared with age-matched control participants, particularly with respect to neuroinflammation and accelerated ageing. Serum protein levels from DS, AD and control participants were measured by enzyme-linked immunosorbent assay (ELISA). Blood smears and post-mortem brain samples from AD and DS subjects were analysed by immunohistochemistry. RUNX1 mRNA expression was analysed by RT-PCR and in situ hybridisation in mouse tissues. Our results suggest that hepcidin, S100β and TREM2 play a critical role in survival and proliferation of glial cells through a common shared pathway. Blood smear analysis showed the presence of RUNX1 in megakaryocytes and platelets, implying participation in myeloid cell development. In contrast, hepcidin was expressed in erythrocytes and in platelets, suggesting a means of possible entry into the brain parenchyma via the choroid plexus (CP). The gene product of RUNX1 and hepcidin both play a critical role in haematopoiesis in DS. We propose that soluble TREM2, S100β and hepcidin can migrate from the periphery via the CP, modulate the blood-brain immune axis in DS and could form an important and hitherto neglected avenue for possible therapeutic interventions to reduce plaque formation

    Neuroprotective Effect of TREM-2 in Aging and Alzheimer's Disease Model.

    Get PDF
    Neuroinflammation and activation of innate immunity are early events in neurodegenerative diseases including Alzheimer's disease (AD). Recently, a rare mutation in the gene Triggering receptor expressed on myeloid cells 2 (TREM2) has been associated with a substantial increase in the risk of developing late onset AD. To uncover the molecular mechanisms underlying this association, we investigated the RNA and protein expression of TREM2 in APP/PS1 transgenic mice. Our findings suggest that TREM2 not only plays a critical role in inflammation, but is also involved in neuronal cell survival and in neurogenesis. We have shown that TREM2 is a soluble protein transported by macrophages through ventricle walls and choroid plexus, and then enters the brain parenchyma via radial glial cells. TREM2 protein is essential for neuroplasticity and myelination. During the late stages of life, a lack of TREM2 protein may accelerate aging processes and neuronal cell loss and reduce microglial activity, ultimately leading to neuroinflammation. As inflammation plays a major role in neurodegenerative diseases, a lack of TREM2 could be a missing link between immunomodulation and neuroprotection.Medical Research Council (Grant ID: RNAG/254), National Institute of Health Research, The John Van Geest Foundation, Cambridgeshire and Peterborough Foundation NHS TrustThis is the author accepted manuscript. The final version is available from IOS Press via https://doi.org/10.3233/JAD-16066

    Choroid Plexus Acts as Gatekeeper for TREM2, Abnormal Accumulation of ApoE, and Fibrillary Tau in Alzheimer's Disease and in Down Syndrome Dementia.

    Get PDF
    BACKGROUND: Genetic factors that influence Alzheimer's disease (AD) risk include mutations in TREM2 and allelic variants of Apolipoprotein E, influencing AD pathology in the general population and in Down syndrome (DS). Evidence shows that dysfunction of the choroid plexus may compromise the blood-cerebrospinal fluid (CSF) barrier, altering secretary, transport and immune function that can affect AD pathology. OBJECTIVE: To investigate the genotype and phenotype of DS individuals in relation to choroid plexus damage and blood-CSF barrier leakage to identify markers that could facilitate early diagnosis of AD in DS. METHODS: To assess allele frequency and haplotype associations ApoE, Tau, TREM2, and HLA-DR were analyzed by SNP analysis in DS participants (n = 47) and controls (n = 50). The corresponding plasma protein levels were measured by ELISA. Postmortem brains from DS, AD, and age-matched controls were analyzed by immunohistochemistry. RESULTS: Haplotype analysis showed that individuals with Tau H1/H1 and ApoEɛ4 genotypes were more prevalent among DS participants with an earlier diagnosis of dementia (17%) compared to H1/H2 haplotypes (6%). Plasma TREM2 levels decreased whereas phospho-tau levels increased with age in DS. In AD and DS brain, insoluble tau and ApoE were found to accumulate in the choroid plexus. CONCLUSION: Accumulation of tau and ApoE in the choroid plexus may increase the oligomerization rate of Aβ42 and impair tau trafficking, leading to AD pathology. We have identified a high-risk haplotype: ApoEɛ4, Tau/H1, and TREM2/T, that manifests age-related changes potentially opening a window for treatment many years prior to the manifestation of the AD dementia.This research was funded by Medical Research Council (MRC grant number RNAG/254), Alzheimer’s Research UK (ARUK), National Institute of Health Research (NIHR), the Down’s Syndrome Association, The John Van Geest Foundation, and the Health Foundation and Cambridgeshire and Peterborough Foundation NHS Trust, Cambridge, UK

    Erythromyeloid derived TREM2: a major determinant of Alzheimer’s disease pathology in Down syndrome.

    Get PDF
    Background: Down syndrome (DS; trisomy 21) individuals have a spectrum of hematopoietic and neuronal dysfunctions, and by the time they reach the age of 40 years, almost all develop Alzheimer’s disease (AD) neuropathology which include senile plaques and neurofibrillary tangles. Inflammation and innate immunity are key players in AD and DS. Triggering receptor expressed in myeloid cells-2 (TREM2) variants have been identified as risk factors for AD and other neurodegenerative diseases. Objective: To investigate the effects of TREM2 and the AD-associated R47H mutation on brain pathology and hematopoietic state in AD and DS. Methods: We analyzed peripheral blood, bone marrow, and brain tissue from DS, AD and age-matched control subjects by immunohistochemistry and Western blotting. TREM2-related phagocytosis was investigated using a human myeloid cell line. Results: TREM2 protein levels in brain and sera declined with age and disease progression in DS. We observed soluble TREM2 in the brain parenchyma that may be carried by a subset of microglia, macrophages or exosomes. Two DS cases had the AD-associated TREM2-R47H mutation, which manifested a morphologically extreme phenotype of megakaryocytes and erythrocytes in addition to impaired trafficking of TREM2 to the erythroid membrane. TREM2 was shown to be involved in phagocytosis of red blood cells. TREM2 was seen in early and late endosomes. Silencing TREM2 using siRNA in THP1 cells resulted in significant cell death. Conclusion: We provide evidence that peripheral TREM2 originating from erythromyeloid cells significantly determines AD neuropathology in DS subjects. Understanding the molecular signaling pathways mediated by TREM2 may reveal novel therapeutic targets.This research was funded by Medical Research Council (MRC grant number RNAG/254), National Institute of Health Research (NIHR), the Down’s Syndrome Association, The John Van Geest Foundation and Cambridgeshire and Peterborough Foundation NHS Trust, Cambridge, UK
    corecore